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Abstract

A detailed examination was performed on several
commonly applied atmospheric stability indices and lightning
activity from 1993 to 2000 to determine the indices
usefulness as predictive tools for determining cloud-to-
ground lightning activity. Predetermined radii of 50
nautical miles around upper-air stations in the Midwest U.S.
were used for the lightning summaries.

Also explored is an improvement upon the commonly
accepted thresholds of the stability indices as general
thunderstorm indicators. An improvement was found and new
threshold ranges were developed for relating stability index
values to lightning occurrence.

Traditional statistical regression methods failed to
find a significant predictive relationship. By examining
new techniques of data analysis, it was found that the
detection and classification abilities of decision trees
derived from the data-mining field best served the purposes
of this study. Decision trees were examined on the large
available database and gignificant results were fdund,
resulting in the development of a lightning forecast tool

for both the probability of lightning occurrence and its




intensity. The predictive ability of the decision trees
used in this study for lightning detection often exceeded
80-90% for most locations with a high degree of confidence.

The most significant features of the decision tree
results were formulated into a forecast prediction tool with
summary results for each location analyzed. These are
specified both graphically and textually in a user-friendly
format for forecasters to use as a “ready to use” predictive
tool for forecasting lightning activity.

The results of this study using classification and
regression trees were significant enough to implement
immediately as a forecast tool for the operational weather
forecast environment. Appendix A of this study is written
as a “ready-to-use” forecast tool for weather forecasters.
It is suggested that Air Force Weather units in the Midwest

U.S. use this “innovative” forecast tool immediately for

forecasting lightning activity.




DEVELOPMENT OF PREDICTORS FOR CLOUD-TO-GROUND LIGHTNING

ACTIVITY USING ATMOSPHERIC STABILITY INDICES

I. Introduction

Thunderstorms with their associated lightning impact
all aspects of military operations. For United States Air
Force (USAF) weather forecasters, flight operations are most
affected by lightning. For safety reasons, lightning
activity in the area will halt most operations involving
aircraft. Problems associated with lightning are not
limited to Department of Defense (DoD) operations since many
civil functions are significantly affected as well, such as
agriculture, transportation, and especially the power/energy
industry. The power industry relies heavily on thunderstorm
forecasts, especially if significant lightning is
anticipated. For example, inclement weather is the single
largest cause of power outages, equating to as many as 40%
of all interruptions. If thunderstorms are possible, great
expenditure is made by this industry to put stand-by workers
on call and get back-up generators started to minimize power
interruptions. In addition, widespread cooling caused by
evaporation during thunderstorm/rain events drastically

reduces customer demand for air conditioning requirements




during the summer season in the U.S. These effects are most
significant in highly populated regions. Mismatches between
generation capacity and customer demand either waste
valuable resources or require expensive increases in supply
for purchases of additional power at inflated wholesale
prices (Dempsey et al., 1998).

Understanding and predicting thunderstorms and
associated cloud-to-ground (CG) lightning activity in an
operational environment proves both difficult and tasking,
especially when considering the time constraints most
operational forecasters operate under. This research
examines atmospheric stability indices as possible
predictive tools for CG lightning activity surrounding
individual upper-air stations in the Midwest region of the

United States.

1.1 Statement of the Problem

An upper-air station is a weather station that observes
and disseminates weather balloon soundings from which the
parameters for atmospheric stability indices are derived.
Balloon soundings indicate the state of the atmosphere by
measuring the temperature, humidity, and winds as functions

of pressure (or height) as a balloon ascends up through the




atmosphere. They are usually plotted manually or automated
on a SKEW-T log-p diagram or in raw data format (AWS/TR-79,
1990) .

Some of the most commonly calculated indices are the
Lifted Index (LI), the K-Index (KI), and the convective
available potential energy (CAPE). Seven indices were
chosen and calculated for the locations used in this study.
Operationally, it is usually left to the discretion of the
forecaster to decide which index to use and which one is
best representative for their region or particular weather
regime.

Unfortunately, on particular days, certain indices may
indicate severe potential, while on others they only
indicate a slight risk of CG lightning activity. Both
conditions tend to occur with varied results. This creates

confusion as to the utility of the indices for the current

forecast location or forecast region that is being examined.

Experienced forecasters know that when analyzing the
forecast environment for the potential of severe weather,
the indices account for a large portion of the analysis and
are a good starting point in the formulation of their

forecast. However, this study shows that the indices

specify a wide range of values for both days with CG




lightning activity and days without any lightning activity
at all.

For very active CG lightning days, which may or may not
be associated with severe weather at the surface, there is
thought to be a noticeable relationship to a limited range
of unstable index values. The significance of this
relationship has been the focus of studies accomplished on
stability indices in the past, but never with substantial
justification (Coleman, 1990). This study attempts to
definitively assess some of the most common indices used in
operational weather forecasting and, to ultimately develop
forecast tools in which these indices are suitable as
predictors of CG lighting activity for individual locations
or regions in the Midwest.

Experienced forecasters seem to have their "favorite"
stability index, but unfortunately forecasters are unable to
determine which stability index to rely upon the most for
every weather regime being forecasted for. Furthermore,
even experienced forecasters should not rely totally on just
one of the stability indices for their forecast and may not
want to even consider using them at all under certain
conditions.

Stability indices have historically been used to assess

the threat and potential severity of thunderstorms (with




which CG lightning activity is clearly associated).

However, it appears no previous studies have assessed the
degree to which stability indices may be used as predictive
tools for CG lightning activity or its intensity as provided
by the highly dependable and proven accuracy of the National
Lightning Detection Network (NLDN), especially over the
Midwest region of the United States.

The goal of this research then, is to ascertain the
best relationship possible between stability indices for use
as forecast tools in predicting any CG lightning or the
amount of activity surrounding upper-air stations in the
Midwest. Any predictive relationships found will increase
weather forecaster's confidence levels in their use and
ability to predict CG lightning activity. Any increase in
the ability to accurately predict CG lightning events and
activity will be beneficial to all DoD and civil operations

affected by CG lightning activity.

1.2 Research Objectives

In the absence of adequate predictive tools for

forecasting CG lightning events, this study examines the use




of atmospheric stability indices as a means to discover

methods to exploit any possible significant relationships.

The specific tasks necessary to achieve the goal of this

study were:

1.

to determine the most useful radii (10nm, 25nm, or
50nm) of CG lightning summaries around a station
to examine relationships with and to combine the
most homogeneous months of lightning activity to
maximize the usefulness of the dataset for each
upper-air location;

to analyze the stability indices and formulate an
improved range of values to combine with CG
lightning occurrences;

to examine the CG lightning data and stability
indices for any predictive relationships by using
statistical regression (linear and non-linear)
techniques;

to exploit data mining techniques to introduce new
predictive techniques and to establish the most
significant threshold values among the stability
indices using the detection and classification
abilities of decision trees; and,

to formulate a forecast matrix using any

predictive relationships found of the most




significant features as determined by the decision

tree results.




II. Background and Literature Review

2.1 Lightning Background

The lightning activity data used in this study
indicates cloud-to-ground (CG) strikes only within a 50
nautical mile (nm) radius of each predefined upper-air
station in the Midwest, as disseminated by the National
Lightning Detection Network (NLDN). Relationships were made
between CG strikes at different radii (50nm, 25nm, and 10nm)
in twelve-hour (12Z to 00Z and 00Z to 12Z) increments to
coincide with matching upper-air sounding times for
representation. It was quickly determined that the
lightning data at 50nm was most representative for lightning
in the general vicinity of a station. The CG lightning
strike summaries for the 25nm and 10nm radii seemed to
capture too few occurrences and therefore less significant
relationships could be inferred between the indices and CG
strike activity.

A radius of 50nm was chosen to represent the atmosphere
around each upper-air station for comparison reasons and was
used as the starting point to assess any potential utility
of the stability indices for predicting CG lightning

activity. CG lightning is continuously referred to because,




as will be shown later, lightning activity data from the
NLDN consists of CG lightning strikes only. No intra-cloud
lightning measurements are inferred due to limitations in
sensor threshold measurements (Cummins et al., 1998).

There are limitations to the lightning data used in
this study. Progress in detecting CG lightning strikes has
been well documented in a recent publication by Cummins et
al. (1998), who summarized the detection efficiency of the
network from its past to its present form. Prior to 1992,
GeoMet Data Services (GDS), the organization that maintained
the network during that time, estimated that the average
location accuracy of CG lightning strike locations varied
from 8 to 16 km in the NLDN. The flash detection efficiency
during this same period was around 70%, using first stroke
peak currents of greater than 5 kiloAmps (kA). Data model
estimates do not include flashes with peak currents less
than S5kA and are not considered a CG flash because of large
uncertainties in the peak current distribution at lower
amperages. In early 1992, GDS calibrated the sensors,
increasing the accuracy of the network to 4 to 8 km, with a
flash detection efficiency of 65 to 80%. Once an upgrade in
1995 was completed, the location accuracy improved to 1 to 2

km, with a first stroke detection efficiency of 80 to 90%.

However, manual video verifications showed detection




efficiencies of 84% prior to the upgrade in 1994 and 85%
detection efficiencies in 1995 after the upgrade.
Therefore, significant ambiguities between data prior to
1995 are not expected and appear acceptable (Wacker and
Orville, 1999).

Prior to the establishment of the NLDN, documenting
thunderstorm events was through visual observations or
perhaps radar and satellite information to supplement
detection. The most significant deficiency of this system
is the timeliness and accuracy of reporting. The NLDN
alleviates these potential inaccuracies by providing
automated near real-time reporting of CG lightning data to
forecasters. Since 1991, upgrades to NLDN sensors have
increased the accuracy of stroke detection significantly.
The most recent upgrade, completed in 1995, reduced the
total number of sensors from 130 to 106 because of an
increase in the effective range of the existing sensors
(Cummins et al., 1998). The location accuracy has been
improved by a factor of 4 to 8 since 1991, resulting in a
median location accuracy of approximately 500 meters at its
best. The detection efficiency increased from 65-80% in
1992-1994 to 80-90% after the 1995 upgrade. This is
significant since most stability indices and lightning data

used in this study included the 1993-1994 period of record.




However,

|
|
\
|
|
1995 were available

(see Table 1).

there were a few locations where only data since

Table 1. Data availability for each location used in this
study.
WMO ICAO Location State Elev Lat Lon Period of
(m) Record
72248 SHV SHREVEPORT REGIONAL LA 79 32.28 N 93.49 W 2/95-5/00
72249 FWD FORT WORTH TX 196 32.50 N 97.18 W 7/94-5/00
72340 LZK NORTH LITTILE ROCK AR 165 34.50 N 92.15 W 1/93-5/00
*72355 FSI FORT SILL (Military) OK 362 34.39 N 98.24 W 1/93-5/00
72357 OUN NORMAN/WESTHEIMER OK 357 35.13 N 97.27 W 1/93-5/00
*%72363 AMA AMARILLO ARPT(AWOS) TX 1099 35.14 N 101.42 W 1/93-5/00
72440 SGF SPRINGFLD MUNI(AWS) MO 387 37.14 N 93.23 W 5/95-5/00
72451 DDC  DODGE CITY (AWOS) KS 790 37.46 N 99.58 W 1/93-5/00
72456 TOP TOPEKA/BILLARD MUNI KS 270 39.04 N 95.37 W 5/95-5/00
72558 OAX OMAHA/VALLEY NE 350 41.19 N 96.22 W 7/94-5/00
72562 LBF N. PLATTIE/LEE BIRD NE 849 41.08 N 100.41 W 1/93-5/00
72662 RAP RAPID CTY RGNL ARPT SD 964 44.05 N 103.03 W 1/93-5/00
74455 DVN DAVENPORT UPPER-AIR IA 229 41.37 N 90.35 W 3/95-5/00
* 127 sounding only

** SWEAT index missing 11/98-5/00

2.2 Stability Index Background

Weather balloons attached to their Styrofoam-boxed
instrumentation called rawindsondes have been used to gather
atmospheric measurements of the vertical temperature,
moisture, and wind profiles (soundings) above a location
since the early 1900s. Rawindsondes have been the

foundation of the global upper-air observing system with

more than 1,000 rawindsonde stations operated by 92




countries as of the early 1990s (NOAA, 1992). Most of these
upper-air stations in the United States launch weather
balloons twice a day, once at 00Z (Universal Time
Coordinated (UTC) or Greenwich Meridian Time (GMT) and again
at 12Z. Across the continental United States, weather
balloons are launched from over 100 different locations,
from which many various calculations are made from the
environmental data gathered. These range from the complex
analysis/forecast models developed by weather organizations
to the derived stability indices used in this research
effort. Due to the inaccuracy, at times, of these weather
models, research to improve them is a continuous effort.
Stability indices, then, are an essential part of the
analysis/forecast process (especially for convective weather
forecasting) and are used in combination with the
analysis/forecast models to determine the current and
forecasted states of the ever-changing atmosphere. Thirteen
sounding locations in the Midwest were chosen for this study
from the various government and military sounding sites
indicated in Figure 1. While the results of all 13
locations are presented, this study focuses on two of the

sites, which are deemed representative of the entire

regional climate regime. One in Oklahoma, a National




Weather Service (NWS) sounding site, is Norman (OUN) and the

other, in west-central Nebraska, is North Platte (LBF).

)
t
'

\

Figure 1. United States upper air stations along with their
corresponding ICAO (International Civil Aviation
Organization) identifiers. The Midwest sounding
sites included in this study are circled.

2.3 Atmospheric Sounding Data Reliability

The soundings, derived from the rawindsondes discussed
previously, refer to a profile of vertical distribution

(from a single location) of the pressure, temperature, dew

point temperature, wind direction, and wind speed from




measurements taken by a rawindsonde as it traverses upward
near the site where the balloon was launched. Depending on
the strength of the winds aloft though, the inforﬁation
gathered is usually not representative of the atmosphere
immediately over the launch site. It would be ideal to have
an exact replicationAof the current state of the atmosphere
directly above each measurement location. However, because
strong winds aloft blow the balloon a considerable distance
downstream from where it was released, this is usually not
the case. The measurements though must be considered
representative of the sounding location, because no location
error corrections are made to rawindsonde observations
(Andra, 2000). The location errors are especially large
when there are strong upper-level winds blowing the sounding
balloon further away from the launch site as it rises into
the atmosphere. This makes the data even less
representative of the location from which it originated.
Fortunately, most of the indices calculated for this study
compute temperature and moisture measurements from the 850
and 500 millibar (mb) pressure levels, which equate to
roughly 3,000 to 18,000 feet, respectively, in the standard
atmosphere. Rawindsondes typically take measurements well

above 300mb (over 30,000 feet), where location errors can be

quite large. For purposes of this study, it is assumed, as




it is for the national rawindsonde network, that these
errors are minimal and thus are not considered significant,
especially in a data dense region such as the Midwest with

diminutive terrain complexity.

2.4 Stability indices as Predictors

There are numeroug other severe weather indices in use,
many of which are used at the National Severe Storms
Forecast Center by forecasters who specialize in severe
weather forecasting. The indices presented in this research
effort are those routinely used by forecasters to evaluate
the stability or instability of the atmosphere. The
stability indices can be thought of as the analyzed
convective potential of a sounding expressed as a single
numerical value. Miller et al. (1972) developed the
generally accepted stability index thresholds for the
Midwest that were used in this study. The stability indices
were further classified into the threshold categories listed
in Table 2. From these categories, an improved range of
values for the occurrence of CG lightning is suggested in

the next chapter. But first calculations of each stability

index are discussed.




Table 2. Suggested range of index values as general
thunderstorm indicators (AFWA, 1998).

Index REGION best applied| Weak (Low) Moderate Strong (High risk)

CAPE East of Rockies 300 to 1000 1000 to 2500 2500 to 5300

E f Rockies
K-Index a,St O, © .l 20 to 26 26 to 35 > 35
in moist air
Cool, ist
KO- Index [SO0%, moisk > 6 2 to 6 <2
climates (Pacific

Lifted Index All 0 to 2 -3 to -5 < -5
Showalter CONUS > 3 2 to -2 < -3
Total Totals East of Rockies 44 to 45 46 to 48 > 48
SZEeAVII;r(ef)OI- Midpv;.easitnsand < 275 275 to 300 > 300

2.5 Stability Index Calculations

Convective Available Potential Energy (CAPE) -

CAPE is a measure of the amount of buoyant energy
available to accelerate a parcel of air vertically. CAPE is
directly related to the maximum potential vertical speed
within an updraft or a summation of the amount of buoyancy
(not accounting for drag or non-adiabatic effects). Higher
values indicate greater potential for severe weather.

Observed values in thunderstorm environments often exceed

1,000 joules per kilogram (J/kg), and in extreme cases may
exceed 5,000 J/kg. However, as with the other indices, a
wide range of values are associated with a wide range of

weather phenomena, notwithstanding, lightning activity.

CAPE is represented on a skew-T log-P diagram as the area of




energy enclosed between the environmental (sounding) lapse
rate and the parcel derived lapse rate from the LFC (Level
of Free Convection) to the EL (Equilibrium Level) (AWS TR-
79/006, 1979). This area, often called the positive area,
is directly related to positive buoyancy. This positive
area represents the maximum potential strength of updrafts
within a thunderstorm, should one develop.

CAPE values of greater than 1,500 J/kg, dependent upon
location and season, represent enough energy to produce
thunderstorms. A value greater than 3,000 J/kg represents
enough energy to produce strong thunderstorms. Negative
values of CAPE denote a relatively stable atmosphere and are
referred to as Convective Inhibition (CIN), which is
computed as the negative area on the sounding, 1if it exists
(AWS TR-79/006, 1979). CIN was not computed for this study.
Knowledge of a CAPE profile or the shape of a sounding also
has some implications, but was not considered. For example,
two soundings may have the same CAPE values but different
profile shapes (South African Weather Bureau, 2000). This

study therefore utilizes the positive values of CAPE in

comparisons with CG lightning activity.




Showalter Stability Index (SSI)-

The SSI (Showalter, 1953) is a measure of the potential
instability in the 850mb to 500mb layer. The SSI may be
unrepresentative if significant amounts of moisture reside
below 850mb with dry air residing above. In this case the
SSI would not be able to detect the resulting instability.
SSI is the stability index most commonly used by military
and other forecasters. It indicates the general stability
of an air mass but should not be used when a frontal
boundary or a strong inversion is present between the 850mb
and 500mb levels. SSI is computed using the layer between

850mb and 500mb as follows:

SSTI = T500 - TP500 (1)

where,

e T500 = the measured temperature in degrees Celsius at
500mb

e TP500 = temperature in degrees Celsius of an air parcel
lifted moist adiabatically from the 850mb lifted
condensation level to 500mb

Lifted Index (LI) -
The LI (Galway, 1956) is a measure of the potential

instability from the surface to the 500mb level. It is very

gimilar to the SSI, but instead of using the arbitrary




choice of the 850mb level, it is usually computed by lifting
a parcel with an average mixing ratio along the dry adiabat
in the lowest 3,000 feet of the sounding using the mean
mixing ratio by equal area averaging to better consider the
available low-level moisture below the 850mb level. There
are various methods used to determine the initial level.
Some methods use the maximum forecasted afternoon
temperature or the mean sounding temperature in the lower
levels if significant heating or cooling is not expected
during the afternoon. The algorithm used at the Air Force
Combat Climatology Center (AFCCC) uses the average mixing
ratio in the lower 3,000 feet to compute the LI for this
study.

A common measure of atmospheric instability, the LI is
obtained by computing the temperature that air near the
ground would have if it were lifted to 500mb (approximately
18,000 feet for the standard atmosphere) and comparing that
temperature to the actual temperature at that level.
Positive values reflect stable conditions while negative
values reflect unstable conditions (the parcel is warmer
than its environment so it will continue to rise. It is

computed as follows:

LI = T(500mb environment) - T(500mb parcel) (2)




The LI is measured in degrees C, where “T(500mb
environment)” represents the 500mb environmental temperature
and “T(500mb parcel)” is the rising air parcel's 500mb
temperature. If the lifted air parcel is warmer than its
surrounding environmental temperature then it should
continue to rise. Thus, negative values indicate
instability and the more negative, the more unstable the air
is, and the stronger the updrafts are likely to be with any

developing thunderstorm(s) .

Total Totals Index (TTI)-

The TTI (Miller, 1972) consists of two components:
Vertical Totals (VT) and Cross Totals (CT). VT represents
static stability between the 850mb and 500mb levels while
the CT includes a moisture parameter, the 850mb dew point
temperature. As a result, TTI accounts for both static
stability and 850mb moisture amounts. However, TTI can be
illusory in situations where the low-level moisture may
reside below the 850mb level. For example, if a significant
capping inversion is present, convection may be inhibited
even when TTI values are strong.

TTI, like SWEAT (described next), is actually a

compound index designed to better predict the occurrence of
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severe weather, not just general thunderstorms. In other

|
|
\
words, it was developed for use when such indices as SSI or
LI indicate that thunderstorms may occur. However, this
l index is another more commonly derived index that many
novice weather experts may assess equally along with SSI and
; LI to determine relative instability. This is why all the
commonly derived indices were used in this study.
Additionally, it is unknown whether any of these indices
have a predictive relationship to CG lightning strikes
within 50nm of a station. It appears that the predictive
potential of the indices to CG lightning activity within a
| specified radius of a sounding location has never been
assessed. It will be seen later that in fact some of the
‘ indices developed specifically for severe weather indication

appear to correlate well to CG lightning counts. TTI is

1 computed as follows:
|
TTI = (T850 - T500) + (D850 - T500) (3)

To calculate the TTI, two values are computed from the
sounding: the vertical totals (VT) and the cross totals
(CT). VT is a measure of the vertical stability without

regard for moisture parameters and is computed by

subtracting the 500mb temperature (T500) from the 850mb




temperature (T850). CT is a measure of stability that
includes moisture and is found by subtracting T500 from the
850mb dew point temperature (D850). The Total Totals (TTI)
index is simply the sum of VT and CT. Forecasters evaluate
thunderstorm potential according to the general guidelines
provided by Miller (1972). The TTI index is the most
reliable single predictor of severe activity for both warm
and cold seasons. During 1964 and 1965, 92 percent of all
reported tornadoes occurred with a TTI of 50 or greater.
Most widespread tornado outbreaks occurred with a TTI of 55
or greater (Miller et al., 1972). High values of TTI can
result with insufficient low-level moisture (determined by
CT), which is required for convective activity. In other
words, a low CT combined with extremely high VT values can
suggest misleading TTI values. This is another reason to
integrate other indices into a forecasters “convective
potential equation”. Other indices account for various
other temperature and moisture parameters that the TTI may
miss with its single consideration for moisture at the 850mb
level.

TTI must be used with careful attention to either the
CT value or the actual low-level moisture amounts, since it

is possible to have a large TTI value with insufficient low-

level moisture to support thunderstorms.




Severe Weather Threat Index (SWEAT) -

The SWEAT Index (Miller et al., 1972) evaluates the
potential for severe weather by examining both kinematics
(wind) and thermodynamic information into one index. It is
one of the more complex indices derived in this study,
resulting in this index as having one of the highest missing
data rates. The algorithm used by AFCCC to compute this
index requires wind parameter measurements at specified
height levels. If any of these required measurements are
missing, then the index cannot be calculated. These
parameters include low-level moisture (850mb dew point),
instability (via TTI), lower and middle-level (850 and
500mb) wind speeds, and warm air advection (veering between
850 and 500mb) . Unlike KI, the SWEAT index was originally
developed to assess severe weather potential, not just

ordinary thunderstorm potential.

SWEAT=
(12*%850Td) + (20* [TTI-49]) +(2*£850) +£500+ (125* [s+0.2]) (4)

where,

o 850Td is the dew point temperature at 850mb,

o TTI is the total-totals index,




o f850 is the 850-mb wind speed (in knots),

o £f500 is the 500-mb wind speed (in knots), and

o s is the sine of the angle between the wind
directions at the 500mb and 850mb levels (thus
representing the directional shear in this layer)
which equates to the amount of warm air advection
between the layers.

The last term in the equation (the shear term) is set to
zero if any of the following criteria are not met:

1) 850mb wind direction ranges from 130 to 250 degrees,
2) 500mb wind direction ranges from 210 to 310 degrees,

3) 500mb wind direction minus the 850mb wind direction is a
positive number, and

4) both the 850 and 500mb wind speeds are at least 15 knots.
No term in the equation may be negative; if so, that term is
set to zero.

Guidance values developed by the Air Weather Service
suggest severe storms may be possible for SWEAT values of
250-300 if strong lifting is present. In addition,
tornadoes may occur with SWEAT values below the 400mb level,
especially if convective cell and boundary interactions
increase the local shear, which cannot be resolved in this
index. The SWEAT value can increase significantly during

the day, so low values based on 12Z soundings may be

unrepresentative if substantial changes in moisture,




stability, and/or wind shear occur during the day. SWEAT
values of about 250-300 indicate a greater potential for
significant thunderstorms, but as with many of the stability
indices, there are no significant “magical” thresholds

developed for CG lightning activity.

K-Index (KI)-

The K index (George, 1960) or K Value is a measure of
thunderstorm potential based on the vertical temperature
lapse rate along with the amount and vertical extent of low-
level moisture in the atmosphere. The KI is computed as

follows:

KI = T850 + D850 - T7OO + D700 - T500 (5)

KI is a measure of thunderstorm potential based on the
temperature lapse rate, the moisture content of the lower
atmosphere, and the vertical extent of the moist layer. It
should be used to analyze the potential for air mass
thunderstorm occurrence—not potential occurrences of frontal
thunderstorms and not for the potential severity of a
thunderstorm. The temperature difference between the 850mb

and 500mb heights is the parameter used to find the vertical

lapse rate, and the 850mb dew point and the 700mb dew point




depression are used to evaluate the moisture content of the

air, as well as the vertical extent of the moist layer.

As was mentioned earlier, each index has its own
advantages and disadvantages. The main weaknesses depend

primarily upon the levels of analyses used for each index or

the shape of the atmospheric profile.




III. Data Collection and Review

It is important to appreciate the history, background,
and potential for weaknesses of the data used in this study.
Bagically, there are two separate sources of data, lightning
summary output derived from the NLDN, and stability indices
derived from the moisture, wind, and temperature profiles of
upper air soundings. Each stability index is a measure of
the potential instability of the atmosphere by an
examination of the different combinations of temperature and
moisture at pre-determined pressure levels (or heights).

A more formal definition of a stability index is: the
analyzed convective potential of an upper-air sounding
expressed as a single numerical value. The importance of
the stability indices was pointed out by a study conducted
by Air Weather Service and the National Severe Storms
Forecast Center of the National Weather Service (Miller,
1972). This survey used 328 tornado cases to determine
which atmospheric conditions were necessary for the
development of severe weather. The parameters were ranked
in order of importance based on both computer analysis and
forecasting experience. An analogy is drawn to this
approach later in this study using data mining techniques.

Results showed that the second most influential parameter
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for convective forecasting is the stability of the
atmosphere itself, upon which the applications of the
stability indices are based. Additional stability indices
have been developed since the original study (Miller, 1972)
and are considered in this study as well. Each index takes
different atmospheric parameters into consideration. Not
considered, but readily available from upper-air soundings,
are the wind field structures and the indices derived from

them, such as helicity or upper-level flow.

3.1 Data Methods

In an attempt to improve weather forecasts for cloud-
to-ground (CG) lightning activity, which is inherently
related to thunderstorm convection, stability indices and CG
lightning relationships were examined for 13 different upper
air stations in the Midwest. Again, no inferences are made
at this point between severe or non-severe types of
convection. An exhaustive effort was made to utilize a
large sample database of upper air soundings in which the
indices are derived for each location along with highly
accurate CG lightning summaries from the NLDN between 1993

through 2000. Relationships were made between CG strikes at

different radii (50nm, 25nm, and 10nm) in twelve-hour




increments (12Z to 00Z and 00Z to 12Z) increments to
coincide with matching sounding times for representation.
It was quickly determined that the lightning data for 50nm
model was the most representative for an area around each
station. The CG lightning strike summaries for the 25nm
and 10nm radii seemed to capture too few occurrences and
therefore no relationships were inferred between these
indices and CG strike activity.

The average horizontal spacing of the upper-air
sounding network in the Midwest is approximately 200nm.
However, the summer environment in the Midwest is often
characterized by shower-producing systems that occur on
smaller spatial scales. These may be missed by the 50nm
radius used in this study for CG lightning strike
comparisons, yet may still be representative of the general
area around the sounding. This fact could potentially
degrade the significance of any results since many CG
lightning strikes may be missed.

When one looks at the time scales of convective
activity in this region during the summer months, many times
they are on the order of only a few hours. Thus, in a

rapidly changing environment, such as storms triggered by a

fast moving frontal system, these sounding analyses may miss




key moisture and temperature changes affecting the stability
of the atmosphere.

Some potential limitations to this approach, based on
past research, can be anticipated. The goal in this study
is to predicate past studies that utilized the stability
indices but had proven inconclusive (Huntrieser et al.,
1996) . Alternatively, a study was conducted in the High
Plains with a high-resolution mesonet with 25-50km spacing
and twice the number of sounding observations than are
normally available on a day-to-day basis (Mueller et al.,
1993).

The results indicated that, much to their dismay, a
high resolution of timely mesonet upper-air soundings
provided no further skill of the soundings to predict
convective weather outbreaks. Therefore, their conclusion
was that the existing sounding observation resolution should
be adequate for research purposes. This point is very
important, since it helps further justify the available
sounding databases used in this study.

Parameters such as helicity, streamwise vorticity, and
hodographs have proven results when combined with
atmospheric stability indices but require a bit more
detailed analysis then was able to be considered in this

study (AWS TR 79-006, 1990).
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3.2 Data Sources

The Air Force Combat Climatology Center (AFCCC) located
in Asheville, NC provided the upper-air stability indices
and the NLDN summary data used in this study. AFCCC has an
extensive database of NLDN lightning data and raw upper air
data for the Midwest with the ability to provide the data in
many different formats.

Lightning summary data for CG strikes within a 50nm
radius of each location for each 12 hour period were
calculated using archived NLDN data and ArcView GIS mapping
applications. Once the raw data was formatted, ArcView
easily determined the daily counts. Typically it took one
day per location to complete the summaries.

The stability indices utilized in this study were
computed using archived upper-air sounding data ingested by
FORTRAN algorithms developed at AFCCC. These were much
easier to compute than the lightning summaries.
Unfortunately, algorithms were not available for every
stability index and time constraints prohibited the
development of new algorithms to create any additional
indices needed. Suggested applications of other indices not
considered in this study are recommended for future

consideration in the last chapter of this study.
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IV. Methods of Data Analysis

4.1 Analysis of stability indices in deciphering

homogeneous datasets

Box plots and histograms of the indices and CG
lightning data were constructed for each location with
results displayed for LBF (North Platte, NE) and OUN
(Norman, OK). A more thorough attempt was made to analyze
the datasets for display at LBF and OUN because of their
large available datasets (1993-2000) and representative

locations in the northern and southern portions of the

study (Figure 2).

.

Figure 2. Locations used for this study with_;hphasis on
LBF and OUN.




Determining which months are homogeneous in this study
includes a month-by-month assessment of the available data.
It was ascertained that certain potentially unreliable non-
homogeneous datasets should be eliminated and the rest
combined. Combining the significant months helped maximize
the database for each location.

In Figures 3-6, not surprisingly, a noticeable peak in
the summer months for all locations toward more unstable
values of selected indices is evident for both sounding
times (00Z and 12Z). The summer months from May to
September (5-9) project the peak instabilities the most.
Note that only positive values for CAPE are used.

There is also a noticeable increase in the variability
(range of values) between 00Z and 12Z of the indices shown
in Figures 3-6. It is clearly evident the effects that
morning inversions have on 12Z sounding times during the
“active” season. The 12Z CAPE calculations are especially
variable because of the way it is calculated (integration
through the atmosphere which can be concealed at inversion
levels). It is determined shortly that a more unstable
range of values for most indices is required for the 12Z

soundings to be associated with CG lightning activity. It

is not surprising that the afternoon 00Z soundings appear




]

to be most representative when convection is possible or
expected.

Mueller et al. (1993) determined that forecasted
afternoon soundings correlated best to thunderstorm
activity. In their study, the 12Z forecast soundings
performed better than the 00Z soundings. Forecast
soundings were considered in this study but forecast upper-
air model data are not archived in any known data center
and time limitations prohibited their development. Under

that rationale, forecast soundings for each location are

suggested for future research.
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showing seasonal trends and peak instability for
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showing seasonal trends and peak instability for
months 5-9.




4.2 Analysis of Cloud-to-Ground Lightning Activity in

Deciphering Homogeneous Datasets.

Bar plots of mean monthly CG lightning activity also
show a distinct peak during months 5-9 for 00Z and 12Z at
both locations (Figures 7 and 8). Bar plots for the total
number of days with any CG lightning activity (labeled
CG_COUNTS) were also constructed in Figures 9 and 10. It
may be arguable whether to include months 4 or 10 at 12Z
for OUN as the active lightning months, but LBF definitely
supports the hypothesis that months 5-9 are the most active
for CG lightning activity and would exhibit the most

homogeneity for all locations.

4.3 Maximizing the Datasets

To optimize the usefulness of the database for each
location, an effort was made to see if it would be
reasonable to merge specific “active” months together for
analysis purposes. The indices and CG lightning summaries
obviously show a significant variability by season.
CG lightning counts are significantly lower or non-existent
and index values indicate much higher variability for the
“cool” or inactive months from October to April.

Conversely, significant peaks in CG lightning counts and

less variability for most indices existed for months 5-9.




Accordingly, to further optimize the usefulness of the
dataset for each location, it was decided to combine the
more homogeneous data set of just the warm “most active”

months (5-9) for determining underlying threshold values of

the indices to CG lightning activity.
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Figure 7. Mean CG count by time/month for LBF.
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Figure 8. Mean CG count by time/month for OUN.
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Figure 9. Total CG lightning days within a 50nm radius of
LBF.
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Figure 10. Total CG lightning days within a 50nm radius
of OUN.

4.4 Developing a Baseline Climatology of Stability Index
Values for Predicting CG Lightning Activity.

In their article “A baseline climatology of sounding-
derived supercell and tornado forecast parameters”, E.
Rassmussen and D. Blanchard discuss the need for a baseline
climatology of sounding threshold values to weather events
in support of operational thunderstorm forecasts. Their
study concentrated primarily on the climatology of CAPE and

other more dynamic weather parameters to severe
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thunderstorm and tornado occurrences. The question that
they felt needed to be answered was “at what values or
thresholds of stability indices should forecasters become
concerned about thunderstorm potential?” Since the CG
lightning summaries used in this study are obviously
related to thunderstorm occurrences, this study, with its
exhaustive climatological database of indices, should be
able to potentially answer their question. In particular,
to determine threshold values for individual locations and,
if a relationship exists, for a forecast region comprised
of the upper-air locations in Figure 1.

Weather forecasters need to know a climatological
range of values of each stability index to days with any CG
lightning activity. Up until now it appears an exhaustive
study of the predictability of the indices to NLDN
lightning summaries has yet to be made. A suggested
threshold range of values by region was made for
thunderstorms by a recent publication from the Air Force
Weather Agency (AFWA) titled “Meteorological Techniques”
(AFWA TN-98/002, 1998). This AFWA Technical Note suggests
a range of values for the indices used in this study and
categorizes the range of index values into general

thunderstorm, severe thunderstorm, or as tornado indicators

(see Table 3). For the purpose of this study, general




thunderstorm occurrence or any occurrence for that matter
is applicable since it attempts to predict any amount of CG
lightning activity. For this study, it should be noted
that no inference is made to the severity of each
thunderstorm, perhaps for a future study. However, an
inference is made as to the potential amount of CG

lightning expected later in chapter 5 on regression trees.

Table 3. Suggested range of index values as general
thunderstorm indicators (AFWA TN-98/002, 1998).
Index REGION best applied Weak (Low) Moderate Strong (High risk)
CAPE East of Rockies | 300 to 1000 1000 to 2500 2500 to 5300

E T Rockl
K- Index ast of Rockies 20 to 26 26 to 35 > 35
in moist air

Cool, moist
KO- 2 t
Index climates (Pacific > 6 © 6 < 2

Lifted Index All 0 to 2 -3 to -5 < -5
Showalter CONUS > 3 2 to -2 < -3
Total Totals East of Rockies 44 to 45 46 to 48 > 48
siigi;:fr Miiﬁj?;;nd < 275 275 to 300 > 300

The statistical software package SPSS (version 10),
allows the user to select a range of values for each index,
permitting an easy assessment of the merit of the suggested
range of values from Table 3 for each index category (Weak,

Moderate, Strong). One must keep in mind that weak,

moderate, and strong in this case represents an




“indication” for general thunderstorms without reference to
their severity.

These threshold ranges for each stability index are
used as a starting point to observe any correlations to CG
lightning occurrence. Each location’s index data was
merged effortlessly with the CG lightning data using the
statistical software package S-Plus. The merge by variable
(MONTH/DAY/YEAR/HOUR) command allowed the dates and times
of the indices to sync with the lightning data. An
interesting way to indicate the initial relationships
between the index values ana CG lightning occurrence using
SPSS were displayed as simple line plots by month of CG
lightning occurrence versus counts of the number of times
each index was within the thresholds established in AFWA
TN-98/002.

For instance, KO and SSI seem to have an inverse
relation. This was a bit confusing at first but realizing
that no lower or upper limits were constrained on these two
indices suggests that limits should be applied. The SWEAT

index matched the best in the summer months, but

significantly over-counts in the winter/spring months.
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Figure 11. 00Z LBF CG<50nm occurrence in thick line vs.
“weak” thresholds for index counts by month.

This suggests different thresholds for the “cool” months
might be appropriate by an adjustment of the lower
thresholds toward more unstable values. TTI and KI have a
reverse relationship in that they seem to grasp a
correlation in the “cool” months while dramatically under-
counting events during the “warm” active season. In this
case, an adjustment should be made to include more unstable
values. Before any adjustments were made, comparisons
using the “strong” threshold values from AFWA TN-98/002
were compared in Figure 10.

The predictive ability of the indices using the

“strong” threshold values indicates that the thresholds




established for TTI matched astonishingly well to the
occurrence of CG lightning events (N>0 for OBCOUNT). KO
thresholds significantly over-counted events while the

remaining indices substantially under-counted.
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Figure 12. 00Z LBF CG occurrence as thick line vs.
“strong” threshold index counts by month.

With these results, a comparison was made and an
attempt to determine a more suitable range of threshold
values was made while keeping in mind the relationships of
the indices found for the “weak” and “strong” thresholds.

Results for the best-fit thresholds at LBF and OUN are

displayed in Figures 11-14.
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3.5 A Better Range of Index values

Categorical box and whisker plots of the annual range
of index values for 00Z OUN (Figures 15 and 16) help
ascertain another way to evaluate the annual range of
values each index can take on for days with and without CG
lightning (labeled in the figures as none and t-storm).
Suggested improvements and results for LBF 00Z and 12Z are
displayed in Tables 4 and 5.

A box and whisker diagram illustrates the spread of a
set of data about the mean. It also displays the upper
quartile, lower quartile and interquartile range of the
data with 50% of the data residing inside the “box”. A
shorter box in this case is indicative of more consistency
as a categorical predictor with a narrower range of values.

The annual categorical box and whisker plots once
again reveal the decreased variability of most indices for

the t-storm category.
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With 50% of the range of index values determined
inside the “box”, there is good agreement as to the
hypothesis that the suggested range of values determined in
Tables 4 and 5 are superior to the range of values
determined for general thunderstorms in AFWA TN-98/002
(Table 3). Indeed, for example, the t-storm “box” for KO
in Figure 15 indicates a range of values from -18 to O
ingide the “box”, which related well to the suggested

threshold range of values for 00Z OUN in the southern

plains in Table 5.




Table 4.

Suggested range of values for predictive ability
of each index to CG lightning occurrence in the
Northern Plains.

Index REGION applied | % time in category 122 00Z
CAPE Northern Plains 66.50% 500 to 6000 | 500 to 6000
K-Index Northern Plains 57.10% 25 to 35 25 to 35
KO-Index |Northern Plains 56.30% (-)11 to © (-)18 to -3
Lifted |\ thern Plains 70.80% <0 <0
Index
Showalter |[Northern Plains 71.70% < 0 < 0
Total .
ota Northern Plains 67.20% > 47 > 47
Totals .
SWEAT Northern Plains 73.90% > 200 > 200
Table 5. Suggested range of values for predictive ability
of each index to CG lightning occurrence in the
Southern Plains.
Index REGION applied | % time in Category 122 00Z
, 1400
CAPE Southern Plains 56.40% 1300 to 4500 400;0
K-Index Southern Plains 49.40% 23 to 36 22 to 36
KO-Index |[Southern Plains 48.50% (-)14 to -2 | (-)19 to ©
Lifted o thern Plains 57.30% < -2 < -2
Index
Showalter |Southern Plains 57.60% < -1 < -1
Total I ithern Plains 56.50% > 47 > 47
Totals
SWEAT Southern Plains 51.20% > 210 > 190




3.6 Summary of Data Analysis Methods

A starting point for assessing the utility of each
index to CG lightning within 50nm was made by initially
employing the suggested range of index values in AFWA TN-
98/002 for general thunderstorms (Table 3). The “weak”
threshold range of values seemed to have the lowest
relationship and significantly over-counted CG lightning
events while the “strong” threshold ranges significantly
under-counted them. An improved range of values was
determined analytically and suggested in Tables 4 and 5.
Wider ranges of values for CAPE were required for 127 OUN
and slightly more unstable values were required for the 002
sounding thresholds to be more germane. However, no effort
was made to imply the severity of each storm event.
Instead, these suggested ranges are applicable to any CG
lightning event (within 50nm) relative to the indices used.
It is assumed in this case that the indices are
representative of the atmosphere within a 50nm radius to
determine CG lightning occurrence. The suggested range of
values found are in agreement with the range in values of

the box and whisker plots shown in Tables 4 and 5 for the

gsampling locations (LBF and OUN) .




V. Regression Analysis

In an effort to improve upon the suggested annual
range of values of indices best determining CG lightning
occurrence established in Chapter 3, regression analyses
were conducted to statistically suggest any utility in
using individual indices or a combination thereof as
predictors of CG lightning.

It is important to note that for regression analysis,
only the “active” months 5-9 together are considered for
each location using the reasoning established in Chapter 2
on homogeneous datasets. The categorical box and whisker
plots in this case should appear less decisive because the
non-active months are not considered.

First, linear regression methods were computed with an
explanation of the results, limitations, and the obvious
disparities with linear regression applications. Next,
logistical regression methods were calculated on the
occurrence or non-occurrence of CG lightning activity.

In Chapter 6 an in-depth look and introduction to the
possibilities of using classification and regression trees

as a forecast tool for CG lightning prediction and

intensity is explored with motivating results.




5.1 Initial Regression Assessment

Again, categorical box and whisker plots, calculated
for months 5-9, were used to contrive the distributions of
the predictor variables (indices) as functions of CG
lightning occurrence/non-occurrence (labeled as
T-storm/none, respectively) in Figures 21, 21, and 23.

Interestingly, comparing the categorical box and
whisker plots, most indices appear to have a predictive
capability by displaying less variability for CG lightning
(T-storm) events and more variability for no (none) events.
When predictive ability is considered, least overlap
between the none/T-storm categories are desired. No single
index stands out significantly, but a few seem less capable
or different from the rest. KO and CAPE display the most
significant category overlap for both locations, indicating
the least predictive capability. SWEAT and CAPE seem
different in that they both appear to be the only indices
whose variability (length of box) increases noticeably for

the T-storm category, while the others are less variable in

the T-storm category.
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| Comparing 00Z OUN and 00Z LBF - KO, CAPE, and SWEAT
appear the least capable predictors. However, at LBF they
are somewhat more capable in deciphering between the two

|
categories than at OUN (less category overlap). In fact,
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KO doesn’t appear to be able to distinguish between the two
categories at all at OUN in Figure 19. A predictive
quality of the indices to CG lightning activity to

regression techniques are considered next.

5.2 Stepwise Regression

Stepwise regression is a popular method when searching
for good subset models, especially, as in this case, when
the number of independent models to compare with is large.
Significance was chosen at the 95% confidence level before
a variable was considered for model inclusion.

Stepwise regression indicated that SWEAT alone had the
most significant relationship. This relationship improved
somewhat with the inclusion of TTI. Many of the other
variables were dropped from the model due to multiple
correlations. R-Squared values ranged from 0.057 at 12Z
for OUN to 0.164 at LBF with significance at the 95%
confidence levels for the model.

A more detailed linear analysis was computed for 00Z
LBF since it showed the highest propensity for a fitted

linear model. An improvement of R-Squared values was made

by forcing the model equation through the origin so the




constant was removed. R-Squared values for fitting a
linear regression line to all cases was 0.24 (Figure 20).
Best stepwise linear regression model for CG lightning

cases only was:

CG>0 = TTI*(-6.27973) + SWEAT* (3.45951) (7)

The model response plot in Figure 21 and 22 show the
problem with fitting a linear or even a quadratic
regression line to CG lightning activity. A high density
of “none” or non-occurrence cases along the x—axis
(equation) are observed for a large range of SWEAT values.
Figure 22 shows a slight “clean-up” of this density by
plotting only the CG lightning occurrence cases. There is
still an obvious concentration of scatters at very low CG
lightning counts. Perhaps this is evidence that a 100nm
radius might be more adequate since more lightning counts
would result, but more than likely, the density pattern
would remain. Regardless, days without CG lightning (none)
have now been eliminated and attention is now focused on
linear regression methods to determine CG lightning counts

when a CG lightning event is expected. There is less

utility under this rationale and the best possible




regression fit was through a quadratic expression (see
Figure 24).

The quadratic expression is shown as the best R-
Squared fit to the regression model using only the SWEAT
index. The 95% confidence intervals are superimposed and
the R-Squared value is increased to 0.35 - not ideal and
only a slightly better fit than when all cases are
considered (R-Squared=0.28). The quadratic expression
appears to be better at capturing the CG lightning
densities at the lower range of values for SWEAT, hence the

higher R-Square value.

OBCOUNT
6000 8000 10000
L 1

4000

2000

0

Fitted : TTI * (-6.28) + SWEAT * (3.46)

Figure 24. Fitted linear regression results.
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5.3 Logistical Regression

Logistical regression analysis extends the techniques
of multiple regression analysis to research situations in
which the outcome variable is categorical. Logistic
regression was used to study how the rate of CG lightning
occurrence to non-occurrence depended on the indices as the

| independent variables. No considerations to CG lightning
counts can be made. The interest here was whether CG
lightning occurred at all during the valid 12-hour period.
A transformation of the data was made in SPSS for each
location to add an additional column label “CG.LOG”, which
stands for CG logistic. A logistic transformation has only
two possible outcomes, in this case whether CG lightning
did occur (T-STORM) or CG lightning did not occur (NONE).
Unlike the linear regression model fit, logistic regression
is based on probabilities associated with the values of the
| categorical predictor (NONE/T-STORM) .

The SPSS logistic model results for 00Z OUN with a
brief explanation of each test measure are listed in Tables
i 6 and 7.

The case-processing summary in Table 6 indicates a

64

O

substantial amount of missing data occurred (30%). This
|




was primarily due to the high missing data rates of SWEAT,
KO, and the CAPE indices, which the logistic regression
model did not accommodate. Therefore, the model eliminated
all cases with any missing wvalues.

The classification table (Table 7) summarizes correct
and incorrect estimates of “CG.LOG”. The columns are the
two predicted values of “CG.LOG” (NONE and T-STORM), while
the rows are the two observed (actual) values of “CG.LOG”.
The overall percentages for both classifications were

fairly significant at 75%.

Table 6. Case processing summary.

Unweighted N Percent
Cases
Selected [Includedin| 745 70.0
Cases Analysis
Missing 319 30.0
Cases
Total 1064 100.0
Unselected 0 .0
Cases
Total 1064 100.0

Table 7. Classification Table.

Predicted
CG.LOG Percentage
Correct
Observed NONE | T-STORM

Step 1 CG.LOG NONE 276 95 74.4

T-STORM 91 283 75.7

Overall 75.0

Percentage

The -2 Log likelihood in Table 8 is directly related

to the deviance measure used in decision trees in the next
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chapter and is discussed in greater detail there. A -2 Log
likelihood of 794 is rather large and is an indication of
the variability of this logistical model fit. The R-Square
values are a measure of the strength of association of the
indices in the model and their predictive abilities. The
association indicated (0.274 and 0.365) has little

significance.

Table 8. Model Summary.

Step -2 Log Cox & Snell Nagelkerke
likelihood | R Square R Square
1 794.458 274 .365

The Hosmer and Lemeshow goodness-of-fit test in
Table 9 divides the predictors (indices) into deciles based
on predicted probabilities, and then computes a chi-square
statistic from observed and expected frequencies. The p-
value of 0.069 is computed from the chi-square distribution
(14.531) with 8 degrees of freedom and indicates that the

logistic model has an insignificant fit (Rice, 1994).

Table 9. Hosmer and Lemeshow Test.
Step  |Chi-square df Sig.
1 14.531 8 .069
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VI. Data Mining (DM) and Decision Trees

Traditionally applied statistical methods seem
unfocused as a predictive tool due to the enormous
variability and range of event versus non-event of the index
values. More revealing ways to interrogate the data were
sought to possibly improve the results of this study.
Originally, it was thought to manually use SPSS utilities to
partition a range of values of individual indices and try
and find the best probability of event versus non-event of
CG lightning. Additionally, this same process was repeated
for the CG lightning counts as the response variable to try
to establish threshold values of each index, if possible,
that best differentiate between active (large number of CG
counts) and non-active events. Succeeding at these methods
would prove a very useful forecast tool but would require
extensive manual work and quickly lead to research for an
automated process already developed to handle such a
condition. Literature review suggested that the field of

Data Mining (DM) might best serve this purpose.

6.1 Data Mining - A Brief History
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The DM field was initially born into and developed by
the computer realm and was not embraced by the statistical
community, initially. Even today there are skeptics, but
today it is generally accepted as a useful statistical tool,
especially when traditional statistical methods fail.

Data mining is an umbrella term that was initially
applied with a negative undertone by the statistical
community and the name seemed to stick. Other names applied
to DM were "fishing" or "data dredging". It seemed to
statisticians of the time that the invalidation of their
elegant analytical solutions to inferential problems by
exploiting data through "guesswork" had to be errant (Selvin
and Stuart, 1966).

The reason decision trees can handle such large
databases is their efficiency in computational speed. The
concept of DM has largely been a commercial enterprise
benefiting computer hardware and software manufacturers that
emphasized the high computational abilities associated with
DM (Friedman, 1997). Although significant advances in
computational speeds over the years have been made,
computational speed remains a consideration for new
approaches to robust database research. Thus, allowing
studies in much larger scope than could be considered

before.

69




There has been an immense amount of research on the
uses and applications of DM tools in prediction modeling,
the results of which have shown that they can and do surpass
the best or normally used models currently in use for some
applications. Therefore, DM methods should be taken
seriously as a statistical prediction tool.

DM is used to discover patterns and relationships of
large observational databases. Statistical software
packages such as S-Plus, SPSS, and SAS have recently
included DM packages for research professionals to utilize.
Some DM techniques include: Decision tree induction,
clustering methods, neural and Bayesian networks, and
genetic algorithms, to name a few. Decision trees fall
under the realm of DM and are therefore introduced as a

predictive tool for this study.

6.2 Decision Trees

Decision trees are based on a hierarchal "branched"
structure that helps find and plainly display key facets of
very large databases. They are important in many DM fields

because they are very good at seeing through the "noise" of

the data and displaying the most important elements of the




results in a straightforward manner (Friedman, 1997). They
are hierarchal in that they find the best predictor
variables, recursively, and then rank and display them
according to their importance in ability to predict the
response variable - exactly what was desired in this study.
As will be shown, the decision tree method used for this
study finds the best index independently (a bivariate
response) and is simpler in approach than most other
methods. Other methods, such as Oblique Classifier 1 (OC1l),
allow for a multivariate response regression tree induction
system. In other words, OCl decision trees contain linear
combinations of one or more predictors at each tree decision
split (Murthy et al., 1994). The result is an oblique split
of the data. Oblique splits are said to be more powerful
than the simpler univariate test, but also more "expensive"
to compute. The term "expensive" has been the benchmark of
DM tools in the past because of their efficient algorithms.
Especially in its infancy, cost as a measure of
computational speed was a much higher priority and selling
point for DM.

For the classification and regression trees applied in
this study, S-Plus was the program of choice. S-Plus is one

of the mainstay programs that incorporate a suite of data

mining commands built in - regression trees, K-means




Cluster, and Bayesian Networks to name a few. The
difference between other programs with decision tree
functions built in, such as SPSS and SAS, is the decision
tree algorithm used to determine the best node splits.
Improving node split methods for decision trees and other DM
tools is ongoing. S-Plus uses reduction in deviance as a
measure to find the best discriminator at each tree node.
Many other node split selection techniques exist but
past results have shown that no single method is superior to
others (Mingers, 1989). Therefore, even though useful and
persistent results were found in this study, it is suggested
that other tree methods might be considered for comparison.
S-Plus tree methods were adapted for this study because they
were readily available and assuring results were found when
using them. It is proposed that comparisons be made using
OCi and C4.5 decision tree routines that are readily
available for research purposes. They are written in S
language for operation on Unix platforms (Marmelstein,

1999) .

6.3 Applications of Data Mining
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Decision trees are one of the main data analysis tools
used in DM today (Brodley, C. et al., 1999 and Murthy et
al., 1994). Applications of DM tools are being introduced
today in many fields. Applications of decision trees in the

past are very significant. Some of which include:

Astronomy:
For filtering noise from Hubble Space Telescope

(Salzberg et. al., 1995).

Remote Sensing:
For automatic pattern recognition and categorization of
earth science data (Rymon, R. and N.M. Short, Jr.,

1994).

Hierarchical decision tree classifiers in high-
dimensional and large class data (Byungyong, K. and D.

Landgrebe, 1991).

Weather Prediction:

Experts in the field of DM are continuously searching

for data to exploit. It appears that weather




prediction is a relatively new venue to DM and a great
potential exists, especially for military weather

operations.

The following were just a few examples. Many other
real-world applications exist, especially in the
bioengineering and medical professions. An interesting
example worth mentioning is the application of decision
trees for DNA identification by S. Salzberg (1995). 1In his
dissertation, Salzberg applied classification trees to DNA
sequences. These sequences involved thousands of base
pairs, of which the sequence of interest was the part of the
DNA code for proteins that occupied only a small percentage
of the sequence. He found that decision trees for this
method outperformed any other technique used at the time.
His conclusion was that decision trees are “a highly
effective tool for identifying protein-coding regions.”
Regression trees in the past, per se, can find the needle in

a haystack, and are highly effective and efficient at it.

6.4 Data Mining in Weather Prediction




DM techniques may be applied in order to generate a
more reliable set of decision rules for weather prediction,
saving resources and potentially lives (Marmelstein, 1999).
A great logical situation exists here. During a preliminary
computer study of 328 tornado cases, the Air Weather Service
and the National Severe Storms Forecast Center concluded
that 14 weather parameters played an important role in the
production of severe thunderstorms and tornadoes. This
study was conducted prior to 1972 and the parameters chosen
were given in order of importance based on computer analysis
and forecast experience (Koceilski). The conclusion was
that the stability of the atmosphere (easily determined by
the indices) was the second most important parameter
involved. Some logical questions to ask today would be -
"Would this still be true today?" or "Were the datasets used
back then comprehensive enough?” There were extreme
limitations in data analysis recourses and in the manual
techniques applied back then. It would be relatively easy
to tap into a much more comprehensive search for important
weather parameters through the use of DM tools.

With large databases of weather measurements built up
over the years, many useful applications in meteorology may

be found by using DM techniques. Decision trees were

designed to handle copious amounts of data for quick and




efficient calculation and display. More generally, decision
trees are basically a series of tests organized in a tree-
like structure, where each test on a node split 1is
equivalent to a linear discriminate as in normal regression.
In other words, the number of iterations for normal
regression is equivalent to the number of nodes in a
decision tree. But, unlike normal regression, combinations
of nominal/ordinal data may be used as predictors. This is
one of the dominant traits of decision trees versus normal
statistical regression models. Decision trees have the
inherent ability to choose the best predictors among a
multivariate set for the given task. As will be seen, the
trees grown for this study were quite small because the most
significant features were of primary concern. Having a
relatively small tree as a forecast tool also makes them
both easy to use and to understand. Decision tree experts
say one should prefer the simplest model that fits the data

(Bishop, 1995).

6.5 S-Plus® Model Used in this Study

The recursive-partitioning algorithm underlying the

decigion tree function in S-Plus tries to choose the most




significant 50/50 split that partition each predictor
variable (indices) into increasingly homogeneous regions by
a method of reduction in deviance. The result is not only
determining the most important index among the others as a

predictor for each location, but also the most precise

threshold value. To visualize this, imagine a scatter plot
of each index divided so that at any node, the split that i
maximally distinguishes or categorizes the response variable
in the left and the right branches is selected. This
process is done recursively on each separate predictor
variable and determines which index is the single best
predictor (using the reduction in deviance goodness of fit
measure) for the assigned tree node split.
By applying the reduction in deviance measure, the
amount of overlap between the categories (misclassification
error rate) is minimized. The average misclassification
error rate for most locations ranged between 25-30%, which
is similar to the logistic regression classification
results. Misclassification error rates suggest that the
best results identified are correct 25-30% of the time.
This is the best decision tree model fit that can be
expected for such large variances seen in the indices.

The tree model used in S-Plus for a classification tree

assumes that the response variable follows a multinomial




distribution. The multinomial distribution is just a
natural extension of the binomial distribution to allow any
finite number of categories instead of just two for the
binomial.

The two types of decision trees used in’this study were
classification and regression. Both classification and
regression trees were useful tools for predicting CG
lightning activity. 1If the response variable was a factor
(categorical), such as t-storm/no t-storm (none), the tree
is called a classification tree. 1If the response variable
is numeric, such as CG lightning counts, then a regression
tree is calculated.

A summary of the decision tree algorithm process
follows these 3 simple steps to determine or “fit” the best

results:

1. 8plit the set of predictors (indices) using the goodness
of fit measure (S-Plus uses reduction in deviance). Using
the reduction in deviance measure for each potential split
in a classification tree is similar to the log-likelihood
used in logistic regression for classification trees and
poissan/logit regression for regression trees. These tests

are done recursively on each predictor-TTI, KI, SWEAT, etc.
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2. Check the results of each split comparison. Find the
best splits for each index and if every partition is pure,
meaning all indices in the partition belong to the same
class (none or t-storm), then stop. Label each leaf node

with the name of the best class and threshold value.

3. Continue to recursively split any partitions that are not

pure.

Figure 27 is an example graphic display of the
straightforward manner of S-Plus classification tree output
at 00Z OUN. The lengths of the tree branches are
proportional to the significance of each classified split,
which equates to the quantity of reduction in deviance.
Also displayed is a burl plot of each index at the first
split, which indicates the goodness of fit summary for each
predictor at the model's parent node (KI<27.75). The
goodness of fit for each predictor in the model is the
difference in deviance between the current node and the
successive offspring nodes. The burl plot is a single
vertical line for each potential split which is used to
determine the best threshold value. Reduction in deviance

is plotted against each possible potential split; with the

most significant split in this case when the K-Index is




27.75. The worst predictor at this level is by far the KO-
Index, noted by the diminutive vertical extent of the burl
plot. The KO-Index at the parent node appears to have

nearly no prediction capability (reduction in deviance) at

any of the potential splits. But the KO-Index is not

excluded in

examine the burl plot at the KO<-16.0729 node, in Figure 28,
we can see that, although not as decisive as KI was at the
parent node,

level in the tree, compared to the other indices. Further

analysis of

poses any prediction potential.

Figure
node (right
and LI also

significant

peak) is at

any potential future splits. 1Indeed if we

it has the most predictive potential at that

the data is needed to determine if this split

29 displays the burl plot at the SWEAT<230.5

side branches of the classification tree). KI

appear to have predictive abilities but the most

reduction in deviance (highest and steepest

the SWEAT<230.5 split. |
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Figure 27. Example classification tree output for 00Z OUN
with burl plots of the first tree node split.
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Figure 28. Burl function for 00Z OUN at the KO<-16 tree
node split.
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Figure 29. Burl function for 00Z OUN at the SWEAT<230.5
tree node split.




6.10 Classification Tree Summary Output

Actual S-Plus summary tree output in Table 10 is the
non-graphic digplay of the same tree in Figure 27. The
significant features are highlighted for simplicity. The
classification tree results are not as easily discernable
than the graphic, but more detail about what is going on at
each non-terminal node branch is possible. An explanation
of the summary tree output for 00Z OUN in Table 10 follows:
The Parent NODE is split into the first two branches (none
and t-storm NODE) which are labeled as nodes 2) and 3)
respectively. This first split is the most significant with
the significance of all the remaining splits depending on
the homogeneity of subsequent index threshold splits, if
any. In this example, there are 4 subsequent splits after
the first split (5 terminal nodes), their significance
depending upon further analysis.

KI<27.75 is the most significant threshold for
predicting no CG lightning occurrence (none). There were
335 cases in the none category split with accuracy near 72%.
Next, combine this with LI>3.0 in the next branch (node 5)
and the probability increases to an 82% occurrence.

KI>27.75 is the most significant threshold for

predicting CG lightning occurrence (t-storm). There were




370 cases in the t-storm category split with 60% initial
accuracy. When this is combined with SWEAT>230.5 in the
next branch (node 7) the probability of CG lightning

increases to 72% accuracy.

Table 10. Actual S-Plus summary tree output for 00Z OUN.

*** Tree Model ***
Classification tree:
Number of terminal nodes: 5
Residual mean deviance: 1.234 = 863.8 / 700
Misclassification error rate: 0.33 = 238 / 705
node), split, n, deviance, yval, (yprob)
* denotes terminal node
Parent NODE:
1) root 705 971.30 Parent NODE ( 0.5461 / 0.4539 )
none NODE:
2) KI<27.75 335 397.70 none ( 0.7194 0.2806 )
4) LI<3.00625 229 289.60 none ( 0.6725 0.3275 )
8) KO<-16.0729 111 129.50 none ( 0.7297 0.2703 ) *
9) KO>-16.0729 118 156.90 none ( 0.6186 0.3814 ) *
5) LI>3.00625 106 99.69 none ( 0.8208 0.1792 ) *
t-storm NODE:
3) KI>27.75 370 494.60 t-storm ( 0.3892 0.6108 )
6) SWEAT<230.5 195 270.20 t-storm ( 0.4872 0.5128 ) *
7) SWEAT>230.5 175 207.50 t-storm ( 0.2800 0.7200 ) *

As discussed previously, misclassification error rates
(or costs) are important for analyzing the significance of
classification trees.. Misclassification costs become more
significant when the categorical counts are low. For this

example, these counts can be considered adequate for

KI<27.75 (N=335) at the first tree node but at the LI>3.0




threshold in the next tree node, countg are debatable
(N=106, which is near the minimum deemed necessary for
significance). Note that less than a 15% gain in category
prediction between LI<3.0 (node 4) and LI>3.0 (node 5) are
revealed (0.67 versus 0.82 respectively), which is not
highly significant.

In summary, slight increases in the significance of the
results were found in the indices ability to predict no CG

lightning events (within a 50nm radius).

6.7 Determining a Significant Decision Tree

At this point it is important to mention that sometimes
the significant split determined by the tree may favor one
classification over the other. An inherent potential
imperfection of tree algorithms results when there are a
disproportionate number of classifiers (none/t-storm) or the
total number of cases is too small (Fickett, J. and C.S.
Tung, 1992). Maximizing the dataset for each location
should alleviate this imperfection.

Fickett, J. and C.S. Tung (1992), found that decision

trees tend to optimize accuracy on the larger class of data.

This appears to be the case for this study as well,




especially for some of the 12Z dataset results at some
locations due to fewer t-storm category occurrences for the
12-hour period. If annual data was considered, an even more
disproportionately higher number of none classifications
would result since obviously there are fewer to no
classifications of CG strikes in the "cooler" months.

For example, the maximized tree models at 12Z for most
locations, typically showed the initial (parent node) split
of 60/40 (none/t-storm) (see results displayed in Appendix A
and B). This may have an influence on the 12Z tree results
since optimum initial category split would ideally be 50/50.
Consequently, the most significant split, for example, at
127 LBF was discerned at a questionable threshold, with LI
ascertained as the most important index with a threshold
value of 4.0. Experience tells us, and comparisons made to
nearby locations, suggest that this threshold value is
questionable. Also, the normal tendency to split the first
node into a decisive category was anomalous in that it chose
a higher than normal probability for none but a
disproportionately lower probability than normal for t-
storm. The first node prediction at 12Z LBF for t-storm was
lower than that for none resulting in both first node

classifications as none, which is not ideal for the first

category split. These facts again support the justification




for combining months 5-9, to "equalize" the categories and
"clean up" the data.

In Table 11 the summary statistics for each predictor
indicates that the best split/threshold values are not just
the mean or median. In fact, for 00Z OUN it is actually
establishing the split based on the tree model's goodness of
fit, which is the best reduction in deviance for S-Plus.
The most significant index as a predictor was KI with a
threshold value of 27.75 which is somewhere between the
median and mean. Also note the significantly higher rates
of missing values for SWEAT, KO, and CAPE, which are

excluded in the maximized tree models.

Table 11. Summary statistics for 00Z OUN.

Summary (OUN - 00z)

TTI KI SWEAT
Median: 46.40 Median: 28.40 Median:203.5
Mean: 45.77 Mean: 25.55 Mean:218.2

Missing: 37.00 Missing:38.00 Missing:207.0

KO SSI CAPE ’ LI
Median:-13.170 Median:-0.249 Median:1333.0 Median:-1.3590
Mean: -12.220 Mean: 0.319 Mean:1548.0 Mean:-0.6466

Missing:223.00 Missing:37.00 Missing:236.0 Missing:33.00

6.10 The Significance of Missing Data

Missing values can occur either in data used to build

trees, or in a set of predictors for which the wvalue of the




response variable is to be predicted. There were no missing
days for the CG lightning summary data so after merging the
two data sets (indices and CG lightning); missing data were
found for the indices only. Similar to logistic regression,
tree regression permits missing data only in predictor
variables. Missing data can be a problem if there are
consistent underlying relationships in the reason it was not
calculated in the dataset, causing distorted results. For
the purpose of generating a decision tree with the highest
unambiguous set of classifications, Marmelstein (1999),
suggests "filling in" each missing case of the dataset with
a fixed value using an imputation method to "repair" them.
S-Plus utilizes a built-in feature that enables the user to
automatically eliminate the missing attributes or replaces
them with a new factor variable; with an added level named
"NA" for the missing variables. It then leaves numeric
predictors alone even if they contain missing values. Since
this study is based on real-world results in a
climatological framework, any manipulation or "imputation"
method would not be desirable. Instead methods were
researched to maximize the database for each location. As a
result, using the "full-model" approach might be wavered for

an approach that would maximize the usable data for the

model as well as be consistent with results.




6.9 Determining Significant Results

Classification (decision) trees have a tendency to
purposely over-fit the data. Brieman et al. (1984), whose
works on CART are referenced often in data mining literature
and is the basis for the development the tree technique used
in this study (S-Plus), determined methods for best tree
development. For best results, the tree should be over-
fitted, in other words, grown too large in order to not miss
any key splits that may be hidden. This yields very low to
near perfect misclassification error rates but reciprocate
reliability. The reasoning behind this is that the data may
show a downward trend or insignificant reduction in
deviance, and then show a significant trend "hidden" further
down the tree. After the tree is grown it should then be
"pruned" back for the best fit. Finding the best fit is
rather subjective because it depends on the nature of data
being used. 1In this case we are looking at the data sample
in more of a real-world climatological sense so interests
are in the key splits - the most important ones. We are
interested in high probabilities with high occurrences for

best model accuracy. Knowing this brings forth the

realization that if a node is split significantly above a




minimum requirement (say 100 cases) then that node must be
highly significant. As a result, most decision tree
software have built-in pruning functions to "prune back" the
insignificant nodes. One solution to the problem of over-
fitting is to reduce or limit the size of the ;ree in some
manner. Over-training can be alleviated in S-Plus by
requiring a minimal number of cases before a split is
considered. It was found that a minimum of 100 cases worked
best to maximize results and minimize over-fitting. Results
were maximized in that none of the key variables or node
splits were missed or left out because, as will be shown in
the output example, more insignificant or less accurate
splits are found when sample size splits reach 100 cases.
This is supported by the fact that a noticeable number of
violations of index stability trends were present for nodes
with observations near or below 100. For example, a node
further down the 127 tree modeled for FWD (Fort Worth, TX)
with fewer than 100 observations indicated a split that
indicated a higher probability for classifying t-storm when
KO> -11.9 (see Appendix A). This is normally considered a
more stable trend for the KO Index. This is most likely an
inconsistent spurious trend because it is likely there were

not enough cases involved to show consistent results. Other

reasons could be an indication that lower/upper bounds may




exist, but in any case, these reasons would not improve the
results significantly.

Another way to supplement the proper size of a tree is
displayed in Figure 26, which is a reduction in deviance
versus number of tree nodes plot. Again, the most
significant reduction in deviance is obtained in the first
split. Subsequent splits at node 5 indicate the most
significant reduction in deviance and results appear minimal
thereafter. It was determined that the most significant
information obtained from the classification tree results
were within the first 5 nodes, with preferred significance
given by limiting case counts to 100, which typically
resulted within the first 3 nodes.

Marlelstein (1999), Brieman et al. (1994), Mingers
(1989), and others, suggest that due to the various methods
used in node split selection, for best results it is best to
cross-validate the results for consistency. Techniques used
to test the "validity" of tree methods can be made by
removing a portion of the data before the tree is grown (or
trained), then grow the tree on both data sets and compare

the results.
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Figure 30. Reduction in deviance versus node size plot for
00Z OUN.

The amount of data to set aside for comparison is
highly subjective, but the smaller the test sample, the less
likely consistent results will be obtained. Some suggest 10
to 20 percent as a test sample for large databases, while
others suggest 40 to 50 percent, if possible. For this
study, comparisons of the full model results (SWEAT, KO, and
CAPE included) lowered the total case counts for each
location by at least 30% due to the missing data of these
indices. Consistencies between the split selections of both
models for each location indicated very stable results and a

high degree of confidence in the outcome. These
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consistencies are easily determined by comparing the
graphical results of both models in Appendix C and D.

For the decision tree used in this study, high
probabilities and high occurrences signify very significant
results as a forecast tool. So a higher credence should be
given to the first split and then only the subsequent gplits
that indicate a continued large occurrence (N) count along
with consistency to surrounding sites. It appears that
results with counts near 250-300 cases should be considered
highly effective. More confidence can be applied to lower
counts nearing 100 cases if the threshold values of the
index remain consistent to surrounding locations possessing
higher counts. For example, at 00Z OUN (see Appendix B -
00Z Full Model Results - NO T-Storm), KI<10.8 remains a
consistent predictor threshold value for NO T-Storm at many
surrounding locations: OAX: KI<11l.1l, TOP: KI<10.6, RAP:
KI<10.6, and LZK: KI<11.9, even though the case counts
dwindle to near 100 cases, these consistencies have far
reaching implications to the significance of the index and
associated threshold values determined by the tree model.
So KI values near 11.0 indicate a compelling threshold for
predicting a non-event nearing 90% accuracy at those
locations. 1In the next section the most significant tree

results are compared.
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6.10 Decision Tree Results

Appendix A consists of a transformation of the less
user-friendly textual S-Plus tree output, as seen in
Appendix C, to an easily ascertained forecast tool.
References are made to a "maximized" tree model and a "full"
model. The full model includes all of the indices in the
tree calculations, resulting in data loss caused by missing
data in some of the indices (see section on missing data) .
SWEAT, KO, and CAPE contain the highest missing data rates
(over 40% at some locations) so a maximized model was
developed that included only KI, SSI, LI, and TTI. The full
model is included for cross-validation purposes in Appendix
B. The classification tree results may be utilized as a
more significant model at some locations for regression tree
results due to the importance of SWEAT and CAPE as CG
lightning count predictors at those locations.

The tree model results were analyzed for each location,
each time period (00z/12Z), and for both full and maximized
models. The most significant results were then quantified

in Appendix A. These official summaries are displayed in

tabular and graphical form in Appendix A, and present




forecasters a user-friendly interface to interpret the index
threshold results by geographical region.

Table 12 is a summary of the classification tree
results for the maximized model at 00Z OUN and LBF which are

tabulated in Appendix A.

Table 12. Sample classification tree results at 00Z from
Appendix A for maximized dataset.

[ OUN (1009) | | LBF (1037) |
T-Storm N P T-Storm N P
if KI>25.2 605 0.56 if SSi<1.1 585 0.69
& Ll<-1.1 402 0.63 & Ki1>30.6 305 0.78
& KI>35 157 0.74 & TTI>52 147  0.86
No T-Storm N P No T-Storm N P
if Ki<25.2 404 0.75 if SSI>1.1 452  0.76
& TTi<46.7 293 0.8 & SSI>5.6 152  0.84
& KI<10.8 107 0.87 & TTI<42.9 122  0.76

Next to the site identifiers (OUN or LBF) in Table 12
are the total number of cases available for calculation by
the tree model (in parenthesis). Noticeable decreases in
the total number of available cases are seen in the full
model results due to missing cases mentioned earlier. Below
the location identifiers are the two tree classes determined

by the initial split: T-Storm and No T-Storm. These

represent the occurrence and non-occurrence of a CG




lightning event within 50nm for the valid time period. The
first index listed below the T-Storm category gives the most
significant index and the threshold value (KI>25.2) for OUN
and (SSI<1.1) for LBF. This is the first (parent) split in
the tree; therefore the same index will be listed under the
No T-Storm category as well. The N and P columns are the
number of cases at that tree branch (node) and the
probability of the occurrence for that category
respectively. Notice that the N cases from the parent split
add up to the total number of cases for that location. Each
index is listed by importance and is inclusive; such is the
hierarchal nature of the classification tree. Inclusive is
the reason for the "if", "&", and "or if" statements labeled
next to each threshold index. Each combination listed leads
to an increased probability of categorical occurrence, but
are valid only if each occur inclusive with the other when
preceded by an "&" symbol.
The results for OUN in Table 12 should read as follows:
There were a total number of 1009 cases classified.
The most significant index and threshold value for
classifying T-Storm is when KI>25.2, in which there were 605
cases. At this threshold, 56% of the time CG strikes

occurred within 50nm. On the other hand, if KI<25.2 (NO T-

Storm category), then, of the 404 cases, no CG lightning




R |

strikes occurred 75% of the time. Notice the first split at
this location was somewhat offset, favoring the NO T-Storm
category. To improve the odds we climb to the next
"inclusive" branch in the T-Storm category side of the tree
output which suggests if KI>25.2 & LI< -1.1 then 63% of the
402 cases included the occurrence of a CG strike within
50nm. By combining LI< -1.1 with KI>35 (the next tree
node), the total number of cases dwindles to 157, but of
these 157 cases, 74% of the time there was a CG lightning
strike within 50nm. The probability for the No T-Storm
category increases to 87% when TTI<46.7 and KI<10.8 occur.
This tree split combines a rather stable KI value (<10.8)
with TTI<46.7 which only occurred 107 times, but with a

significant probability (87%).

6.11 Regional Summary Results

For the maximized tree model at 00Z, KI was the best
predictor to CG strike occurrence within 50nm (T-Storm). KI
was typically either the most significant or the second most
significant by location at 00Z, with threshold values
ranging from 25-30 for all locations with probabilities near
70% and high case counts (N). Best results were obtained at
I.BF, OAX, and DDC, where thresholds of KI>30.5 gave

probabilities near 80% with case counts exceeding 300, which
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were deemed very significant. At OAX, case counts were
N=209, but OAX has a lower proportion of total cases (N=800)
compared to LBF and DDC (N=1037 and N=1012 respectively),
due to sounding data availability problems prior to 1995 at
OAX.

Highest probabilities, roughly 75-85%, for CG strike
occurrences were obtained when a TTI near 50.0 was combined
with other indices at many locatiomns.

It is interesting to note that AMA and RAP were the
only locations with LI as the lone significant predictor at
00Z, with AMA requiring a slightly more unstable value (LI<
-0.4). The results were fairly significant at these
locations with initial probabilities of 75%, increasing to
near 90% when combined with other indices (at very unstable
threshold values). A hypothesis for this is their High
Plains location. Both of these locations reside near or
above 1000 feet in elevation (Table 1), which are the
highest of all locations used in this study. There seems to
be some influence as to the significance of the other
indices at these locations. LI is calculated using the
average mixing ratio in the lowest 3,000 feet of the
sounding. Other indices, like the closely related SSI,

strictly use 850mb readings. There is some indication here

that the 850mb measurements are inadequate in revealing a




relationship between the indices at these elevations. The
lowest 3,000 feet method appears more plausible for the
higher elevations.

Typically, higher initial probabilities (first tree
split) resulted for the NO T-Storm category. This relates
to past relationships between weather forecasters and the
use of indices. Experience tells a forecaster that stable
values of indices indicate a low probability of thunderstorm
occurrence with a high degree of confidence. However,
unstable values of indices usually signify to a forecaster
that further analysis is required. What is revealed here
are the significant threshold values to which a forecaster
might be able to eliminate the need for a thunderstorm
analysis. 1Initial classification probabilities for NO T-
Storm ranged from 75-80% versus 60-70% for T-Storm

classifications.
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6.12 Regression Tree Results

Comparisons of each model are important for the
regression tree results because the number of cases involved
is significantly lower for both the maximized and the full
model since only cases involving CG lightning strike events
were considered. The regression tree results were developed
as a forecast tool to help indicate the likelihood of either
an active or non-active CG lightning event. It appears that
at some locations the CAPE and SWEAT indices are the most
significant predictors to the expected “activity” of CG
lightning events. The regression tree results tabulated and
displayed in Appendix A should be used by forecasters after
they first determined via the classification tree results,
that there exists a high probability for CG lightning
strikes within 50nm for the next 12-hour forecast period.

Table 13 is a summary of the maximized model regression
tree results for 00Z OUN and LBF that are tabulated in

Appendix A.

Table 13. Sample regression tree results at 00Z from
Appendix A for maximized dataset.

mean N | OUN (437) |N mean [ mean N l LBF (516) | N mean

439 334 LI=-43 103 1455 409 386 SSi=-4.1 130 1191

227 129 TT1=45.8 205 572 279 267 SSI1=-1.83 119 699




Next to OUN in Table 13, in parenthesis, there were a
total of 437 cases of CG lightning strike events for the
regression tree to work with. The primary threshold value
and index determined was LI= -4.3. It is this threshold
value which best deciphers between a more active or less
active CG lightning strike event. At the split (LI= -4.3)
the mean CG strike count per the N=103 events was 1455 when
the LI<= -4.3. It would be confusing to say that the values
greater than the threshold index are on the right in this
case. The higher mean CG lightning strike counts are on the
right corresponding to more unstable index values. In other
words, more unstable LI values are more negative. The mean
CG lightning strike counts at OUN were 1455 when LI values
were less than -4.3 and the mean CG lightning strike counts
were 439 for LI values greater than -4.3. This indicates
that the mean CG lightning counts were over 300% more active
on days when LI is less than -4.3 (439 versus 1455).

Another index and threshold value exhibiting potential as a
useful predictor was TTI=45.8 and was taken from the next
node of the same tree. In this case is it less confusing to

say TTI values greater than 45.8 signify a more significant

CG lightning strike event since higher TTI values are more




unstable. In this case, the mean CG lightning strike counts
were over 200% more active (227 versus 572).

It should be noted that the regression tree output in
this study indicated significantly high deviance values for
all locations. This is to be expected with such a large
range in the indices values for active and inactive CG
lighting events. The model results may not explain a
significant amount of the variability in the model but based
on the data presented in this study, it represents the most
significant results obtainable through the use of S-Plus
decision tree methodology. A student-t test revealed that
the means found were statistically different from what would
be expected if no relationship existed. The results
obtained were also consistent with customary trends and
threshold values of the stability indices used and
statistically reveal the most significant features for
weather forecasters to concentrate on.

More unstable values of each threshold index are
required for the regression tree results to best determine
an active event. Perhaps these values may also correlate

well to severe storms outbreaks. This is something that is

left for future research.
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VII. Conclusions and Recommendations

7.1 Conclusions

This study reveals the feasibility of using
atmospheric stability indices to forecast the occurrence of
CG lightning activity for the “active” lightning months of
May through September (Objective 1). This study’s approach
was empirical in nature and represents the likelihood of CG
lighting probabilities based on past occurrences. The
study first suggests an improved range of threshold values,
on an annual basis, than those provided in the past for
general thunderstorm occurrences. These should be
implemented for the stability indices when predicting CG
lightning activity, which is closely related to
thunderstorm occurrence (Objective 2). The Midwest upper-
alr stations studied were divided into northern and
southern regions and a slight modification for the annual
threshold ranges was required for a few of the specific
indices, depending upon their location and sounding
observation time. The utility of these thresholds was most

useful in the northern Midwest where the most constructive

indices were the LI, SSI, TTI, SWEAT, and CAPE. CG




lightning occurred between 67-74% of the time when these
indices were within the determined thresholds. The KI and
KO indices had a 56-57% accuracy, the utility of which is
guestionable.

Alternatively, the annual threshold ranges determined
for the southern plains region of the study barely exceeded
50% accuracy for any of the indices. This leaves the
threshold ranges found to barely possess any predictive
ability at all, based on the threshold ranges established.
This region is more active in the winter months and as a
result the false-alarm rate for this region is much
greater. The influence of CG lightning events in the
winter months is much stronger for the southern Midwest.
In fact, many of the locations in the northern Midwest had
little to no CG lightning events during the winter. Box
and whisker plots revealed that the indices were much more
variable in the winter months as well.

It was determined that due to the seasonal variations
of the indices, especially for the southern Midwest region,
the active months (5-9) should be examined exclusively for
further study. It should be noted then that the results

for the rest of this study are for the combined active

months (5-9).




Linear and non-linear regression techniques were
applied next to examine the CG lightning data and stability
indices for any predictive relationships (Objective 3) that
would improve upon the threshold ranges determined earlier.
Stepwise linear regression eliminated all but a few
specific indices for the best model fit, but even then no
significant relationships were found.

Since traditional statistical methods failed to find
any significant relationships, new methods of predicting CG
lightning activity using stability indices were explored
using decision trees from new data mining techniques
(Objective 4). Reliable and significant results were
obtained and a new predictive forecasting tool was
developed that allows weather forecasters to predict the
occurrence or non-occurrence of CG lighting events with an
average probability of between 80-90% (Objective 5). The
most relevant indices and threshold values were determined
for each individual location and sounding times. Decision
trees implemented an inclusive or hierarchal classification
approach while at the same time maximizing the inclusive
event counts. This inclusive approach means that observing
one index threshold, under the condition that other indices

thresholds must occur as well, allows for the significant

probabilities found.




Interestingly, the most significant indices and
threshold values determined for each location by the
decision tree lead to a predictable sequence. The Lifted
Index was determined best for use in the high plains
locations (RAP and AMA) for both sounding times, in part
due to their higher station elevations. Next, the
Showalter Index was most significant for the northern
plains region of the study at 00Z. Further south in the
more moist regions of the Midwest, the K-Index was the most
gsignificant at 00Z, most likely due to the fact that the K-
Index provides an extra measurement for moisture at the
700mb height level. This extra measurement at 700mb was
also proven to be significant for the 12Z sounding times as
well since the K-Index significance was predominant for
most locations at 12Z. This was easily explained by the
fact that the morning temperature inversions commonly found
at 1272 during the active months (5-9) in the Midwest could
not be resolved by the 850mb temperature/moisture
measurements determined by most of the other indices.

The classification tree results developed allow
forecasters to determine the probability of a CG lightning
event and, if a forecaster determines that CG lightning is

expected, the regression tree results allow weather

forecasters to determine the potential frequency or




“amount” of the CG lightning activity that is to be
expected. These results were then displayed in a user-
friendly format by location and time in both graphical and
tabular forms as a forecast tool for users (Appendix A is
written as a ready to use forecast tool for users by
displaying these results). Regression tree results
displayed the most significant stability index and
threshold value for each location whose value above/below
gave a 300-500% increase/decrease in mean CG lighting
activity based on each threshold found. Again, only events
where CG lightning did occur were analyzed under the
regression trees since the classification tree results
where first used to determine if an event was expected
(Appendix A is written as a ready to use forecast tool for
users by displaying these regression tree results in both
graphical and tabular forms).

The ability of a weather forecaster to predict the
probability of the occurrence or non-occurrence of CG
lightning for all locations analyzed generally exceeded the
80-90% levels which has far reaching implications.
Additionally, using stability indices to determine the
expected amount of CG lightning is unique. Therefore, the

results of this study should prove to be a useful forecast

tool in the operational environment.




7.2 Recommendations for Future Study

Other techniques of analyzing the datasets used during
the course of this study were discovered that could
ultimately improve upon the results, but time constraints
prohibited their implementation in this study. A
suggested approach is to develop forecast stability indices
generated operational forecast models and compare them to
CG lightning activity in the same manner employed in this
study.

Another approach is to implement a specialized
predictor to the indices. One type of specialized
predictor is sometimes referred to as an interactive
predictor. Interactive predictors are especially important
when forecasting rare events such as severe thunderstorms
and tornados. One example of an interactive predictor used
to forecast thunderstorms is the KF predictor (Reap and
Foster, 1979), which is the KI multiplied by the
thunderstorm relative fregquency. This predictor forces the
climatology (the relative frequencies) to be more
responsive to the current synoptic situation. In other

words, it applies a weighting factor empirically, based on

the past history of CG lightning strike probabilities.




Similarly, over 6 years (93-00) of CG lightning data
% are utilized in this study and could be implemented to
create monthly frequency distributions of CG lightning
strikes (within 50nm). These monthly frequency
distributions might be useful as an additional input to
regression analyses (Reap and Foster, 1979). Also, since
this study demonstrated that decision tree analysis
| revealed more promising results than regression analysis,

Table 14 suggests an example method to be used in the same

manner decision trees were employed in this study.

Table 14. Example modification of indices that could be
| offered as predictors to the screening
classification/regression tree analyses.

KI multiplied by CG lightning relative frequency.

SWEAT index multiplied by CG lightning relative
frequency.

TTI multiplied by CG lightning relative frequency.

LI multiplied by CG lightning relative frequency.

7.3 Future Data Mining Applications

There are many suggestions for the use of data mining

tools in weather research since it appears data mining

techniques are in their infancy in this field. Of




|

|

i relevance to this study though are ways to utilize the

‘ stability indices as predictors for the occurrence of CG
1 lightning strikes and the potential number of CG strikes
that may be received.

A careful computerized/technical review of the most
important forecasting parameters, as summarized by Miller
(1972) and as developed by the Air Weather Service and
National Severe Storms Forecast Center (Koceilski), could
easily be revalidated with the use of data mining methods.
Suggested weak, moderate and strong thresholds were
suggested in the study but new, more significant,
thresholds could still be discovered. Classification trees
might, in fact, be capable of determining the single most
important threshold value and predictor to focus a weather
forecast analysis on, assuming the database used is large
enough for an empirical approach. Other additional
parameters could also be considered as well. Consistent
results among data mining tools indicate to weather
forecasters what weather parameters they should concentrate
their analyses on. Benefits may also include substantial

analysis timesavings as well as increased forecast

accuracy.




7.4 Other Atmospheric Stability Indices to Consider

It would be ideal to assess the potential of all
available atmospheric stability indices, but algorithm
development and time constraints were prohibitive for this
study. Some of the indices not included in this study but
which are suggested for future study as predictors of CG
lightning activity are:

e the Fawbush-Miller Stability Index (FMI)
e the Martin Index (MI)

e the Modified Lifted Index (MLI)

e the Bulk Richardson Number (R)

e the Dynamic Index, and the

e Wet-Bulb Zero (WBZ) Height Index

For the purpose of this study, the one index that was
not available but which would have been a significant
consideration for future research is the wet-bulb zero
(WBZ) height because of its recent utility in lightning
research. Traditionally WBZ heights are used to forecast
hail since certain threshold value ranges correlate well
with large hail events at the surface (Miller et al.,

1972). Miller showed that a large majority of the reported

surface hail occurred when WBZ heights are between 5,000-




12,000ft above ground level (AGL) while large hail is most
likely when WBZ heights are between 7,000-11,000ft AGL.
Again, restrictions to these values as well as any other
atmospheric stability index exist by location and forecast

regime and should be determined for individual locations.

7.5 Development of a Lightning Index

Finding an improved range of values for hail
occurrence by location would be useful, but in relation to
this study, another application to consider is WBZ heights
and its recent application to the study of lightning
occurrence. Theory on the origin of lightning suggests
that the process of collision and coalescence of frozen
particles in thunderstorms is the primary mechanism for the
charge separation that produces lightning in thunderstorms
(Dye, 1990). The development of a new “Lightning Index” is
currently ongoing. Stuart et al. (1998), suggests a
"Lightning Index" would likely be based on specific
thresholds of meteorological parameters, such as stability
indices, and offer some form of prediction capability for

the production and frequency of lightning on a daily basis.

Additionally, his suggestion of CAPE and LI to indicate the




potential strength of updrafts and instability potential
when combined with WBZ heights should be studied. This
would provide information that may indicate the potential
for the production of frozen particles, which is thought to
be important to the formation of lightning based on the
theory of Dye (1990).

Stuart et al. (1998), suggests the use of CAPE and LI,
but decision tree results from this study suggest the
significance of SSI in the northern region of the study, KI
in the southern region, and LI in the high western plains
region as the most significant predictors to the occurrence
of CG lightning events. Perhaps the development of a
“Lightning Index” should consider the significant indices
found in the results of this study for their use as
predictors instead, since geographic location is considered
as well. The results of this study also suggest more
unstable threshold values of the indices are required when
applying to the frequency (or amount) of CG lighting

expected.
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7.6 Implementation of Results

The results of this study using classification and
regression trees were significant enough to implement
immediately as a forecast tool for the operational weather
forecast environment. Appendix A of this study is written
as a “ready-to-use” forecast tool for weather forecasters.
It is suggested that Air Force Weather units in the Midwest
U.S. use this “innovative” forecast tool immediately for

forecasting CG lightning activity.
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Appendix A: Optimal Decision Tree Maximized Model Results

This appendix is written as a stand-alone forecast tool
taken from the thesis research results of Capt. Ken Venzke, Air
Force Institute of Technology, Wright-Patterson AFB, OH. It
summarizes the official decision tree results to assist
forecasters in determining the probability of lightning activity
or non-activity for individual upper-air sounding locations in
the Midwest U.S. This forecast tool is valid for the “active”
months of May to September. The stability indices determined as
the most significant by this study were the Showalter (SSI), K-
Index (KI), Total Totals (TTI), and Lifted Index (LI).

First, a brief description is made on how to interpolate
the results, followed by the official results in graphical and
tabular form for both 00Z and 127 valid sounding times.

To begin, an example tabular summary is referenced in Table

A-1 along with the same summary in graphic form in Figures A-1

and A-2. The two upper-air sounding locations are OAX (Omaha,
NE) and TOP (Topeka, KS). The number in parenthesis next to the
locations is the total number of observations surveyed. It

should be noted that only the active months May to September
from 1993 to 2000 were assessed for this study. There are two
categories derived for the probability (P) of the number (N) of

occurrence/non-occurrences of lightning events (T-Storm/No T-
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storm). The results are also inclusive, which is the reason for
the "if", "&", and a few "or if" statements labeled next to each
stability index threshold. This inclusive approach means that
observing one index threshold, under the condition that other
index thresholds must occur as well, allows for the significant
probabilities found. Each combination listed leads to an
increased probability of categorical occurrence, but are valid
only if each occur inclusively of the initial index threshold
value.

The example for OAX in Table A-1 should read as follows:
There were a total of 800 observations available from 1993 to
2000. The most significant stability index at this location was
when SSI<1.1, of which, 66% of the time a thunderstorm occurred
within 50nm of the station during the valid 12 hour sounding
time period. This probability increased to 78% when both
SSI<1.3 and KI>30.5 occurred. Finally, the maximum probability
found for a T-Storm event at OAX was 87% with the additional
requirement that TTI>50.1 must occur in combination with the
other two thresholds. Alternatively, the maximum probability
(91%) found for a non-event (No T-Storm) is when the

combinations SSI>1.3, LI>2.5, and KI<11l.1l occur inclusively.
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Table A-1. 00Z Tabular summary classification example.

OAX (800) TOP (930)

T-Storm N P T-Storm N P

if SSIk1.3 377 0.66 if SSi<2.2 550 0.63

& KI>30.5 209 0.78 & Ki>22.9 441 0.69

& TTI1>50.1 101 0.87 & TT1>49 120 0.74

& Ki1>35.2 130 0.82

No T-Storm N P No T-Storm N P

if SSI>1.3 423 0.73 if S$SI1>2.2 380 0.76

& LI>2.5 296 0.81 & Ki<10.6 124 0.9

& Ki<11.1 106 0.91

Figure A-1. 00Z Graphical classification results example for

T-Storm probability.
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Figure A-2. 00Z Maximized classification tree example for
No T-Storm probability.

551>1.3 23 073 | Kl<25.5
Li>2.5 296 0.31 KI<17.0
Ki<11.1 106 0.91 RN LI>3.8
. . Ki<3.6

551=-2.2
Ki=108
Li=4.4

SRR |37 481
: Kl<134 158

The official graphic results (Figures A-3 and A-4) allow
the forecaster to “visualize” the results geographically. In
summary, the highest probabilities, roughly 75-85% for a
lightning event, were obtained when a TTI>50.0 was combined with
other indices at many locations, but the most significant index
(which is always listed first) and threshold wvalue, that must
occur first, varied by location. Interestingly, the indices and
threshold values determined for each location lead to a
predictable sequence. The LI was determined best for use in the
high plains locations (RAP and AMA) for both sounding times, in

part due to their higher station elevations. Next, the SSI was
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most significant for the northern Midwest region of the study at
00Z. Further south, in the more moist regions of the Midwest,
the KI was the most significant at 00Z, most likely due to the
fact that the KI provides an extra measurement for moisture at
the 700mb height level. This extra measurement at 700mb was
also proven to be significant for the 12Z sounding times as well
since the KI significance was predominant for most locations at
12Z2. This was easily explained by the fact that the morning
temperature inversions commonly found at 12Z during the active
months (May to September) in the Midwest could not be resolved
by the 850mb temperature/moisture measurements via the other
indices.

The mean strike threshold results are displayed in
graphical form in Figures A-7 and A-8, and in tabular form in
Tables A-4 and A-5. The classification results developed allow
forecasters to determine the probability of a lightning event
and, if a forecaster determines that lightning is expected, the
mean strike results allow weather forecasters to determine the
potential frequency or “amount” of lightning activity that is to
be expected.

The mean strike results displayed the most significant
stability indices and threshold values for each location whose
value above/below gave a 300-500% increase/decrease in the mean

lighting activity for each event. Only events where lightning




did occur were analyzed under the mean strike results since the
classification results where first used to determine if an event
was expected.

Next to OUN in Table A-2, in parenthesis, there were a
total of 437 cases of lightning strike events for the mean

strike results to work with.

Table A-2. Sample mean strike results at 00Z for OUN and
LBF

mean N | OUN(437) [ N mean] mean N | LBF(516) | N mean
439 334 LI=-43 103 1455] 409 386 SSI=-41 130 1191
227 129 TTI=458 205 572 279 267 SSI=-183 119 699

The primary threshold value and index determined was LI= -4.3.
This threshold value best deciphers between a more active or
less active lightning strike event. At the split (LI= -4.3),
the mean lightning strike count for the N=103 events was 1455
when the LI<= -4.3. It would be confusing to say that the
values greater than the threshold index are on the right in this
case. The higher mean lightning strike counts are on the right
corresponding to more unstable stability index values. In other
words, more unstable LI values are more negative in this case.
The mean lightning strike counts at OUN were 1455 when LI wvalues
were less than -4.3 and the mean lightning strike counts were
439 for LI values greater than -4.3. This indicates that the

mean lightning strike counts were over 300% more active on days
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when LI is less than -4.3 (439 versus 1455). Another index and
threshold value exhibiting potential as a useful predictor was
TTI = 45.8 and was also considered significant for this
location. 1In this case is it less confusing to say TTI values
greater than 45.8 signify a more active lightning strike event
since higher TTI values are more unstable. In this case, the
mean lightning strike counts were over 200% more active (227
versus 572).

The ability of a weather forecaster to predict the
probability of the occurrence or non-occurrence of lightning for
all locations analyzed generally exceeded the 80-90% probability
levels, which has far reaching implications. Additionally,
using stability indices to determine the expected amount of
lightning strike counts is unique. The results of this study
should prove to be a useful forecast tool in the operational

environment.
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00Z NO Lightning probability results.
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12Z NO Lightning probability results.

Figure A-6.
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Figure A-8.

127 mean strike thresholds results.
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Table A-3. 00Z Lightning Probability Results.

| OUN (1009) | | LBF (1037) |
T-Storm N P T-Storm N P
if Ki>25.2 605 0.56 if SSi<1.1 585 0.69
& Li<-1.1 402 0.63 & KI>30.6 305 0.78
& KI>35 157 0.74 & TTI>52 147 0.86
No T-Storm N P No T-Storm N P
if Kl<25.2 404 0.75 if SSiI>1.1 452 0.76
& TTI<46.7 293 0.8 & SSI>5.6 152 0.84
& Kli<10.8 107 0.87
| 0AX (800) | | TOP (930) |
T-Storm N P T-Storm N P
if SSI1.3 377 0.66 if SSi<2.2 550 0.63
& KI>30.5 209 0.78 & KI>22.9 441 0.69
& TTI>50.1 101 0.87 & TTI>49 120 0.74
& KI>35.2 130 0.82
No T-Storm N P No T-Storm N P
if SSI>1.3 423 0.73 if SSI1>2.2 380 0.76
& LI>2.5 296 0.81 & Ki<10.6 124 0.9
& Ki<11.1 106 0.91
| RAP (946) | | SGF (723) |
T-Storm N P T-Storm N P
if Li<1.1 459 0.75 if KI>30.7 239 0.73
& SSI<-3.3 128 0.91 & KI>34.2 121 0.84
No T-Storm N P No T-Storm N P
if LI>1.1 487 0.73 if Ki<30.7 484 0.69
& LI>2.6 339 0.81 & Ki<13.35 158 0.88
& LI>6.7 111 0.88
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Table A-3. 00% Lightning Probability Results (cont.).

FWD (816) DDC (1012)
T-Storm N P T-Storm N P
if K1>30.5 346 0.61 if SSI<-0.5 546 0.69
& Ki>37.1 110 0.8 & Ki>30.8 366 0.77

& SSi<-24 248 0.82

No T-Storm N P No T-Storm N P
if Kl<30.5 470 0.75 if SSI>-0.5 466 0.7
& TTI<41.2 132 0.92 & Ki<25.0 261 0.78

& SSI>4.3 132 0.86

DVN (731) LZK (1006)

T-Storm N P T-Storm N P
if KiI>25.5 291 0.7 if KiI>27.3 491 0.65

& SSI<-0.3 133 0.86 & TTI>45.7 255 0.8
& Ki>33.4 153 0.84

No T-Storm N P No T-Storm N P
if Ki<25.5 440 0.78 if Ki<27.3 515 0.77
& Ki<17 310 0.83 & LI>0.4 310 0.86
& LI>3.8 203 0.89 & Ki<11.9 157 0.89

& Ki<3.6 103 0.9
SHV (749) AMA (979)

T-Storm N P T-Storm N P
if TTI>44.1 451 0.6 if Li<-0.4 479 0.75
& KI>26.6 405 0.7 & Ki>38.4 139 0.87
or KI>35.9 116 0.84 orif KiI<38.4 340 0.69
& TTI>51.7 154 0.77

No T-Storm N P No T-Storm N P
if TTI<44.1 298 0.79 if LI> -0.4 500 0.72
& LI>1.2 143 0.87 & LI>3.1 171 0.87
or if LI<3.1 329 0.64
& Li>1.4 109 0.71
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Table A-3. 12Z Lightning Probability Results.
OUN (1003) LBF (1031)
T-Storm N P T-Storm N P
if Ki>28.4 497 0.62 if LI<4.0 691 0.49
& TTI1>46.2 332 0.69 & KI>27.5 412 0.58
& KI>35.4 167 0.79 & Ki>32.9 162 0.66
No T-Storm N P NoT-Storm N P
if Ki<28.4 506 0.77 if LI>4.0 340 0.85
& Ki<15.5 182 0.89 & Kli<12.0 100 0.95
OAX (800) TOP (930)
T-Storm N P T-Storm N P
if Ki>24.2 380 0.6 if KI>23.3 514 0.61
& KiI>32.0 188 0.71 & Ki>32.9 239 0.77
& TTI>47.9 137 0.84
NoT-Storm N P NoT-Storm N P
if Ki<24.2 422 0.81 if Ki<23.3 411 0.84
& SSI>3.7 307 0.87 & Ki<7.7 136 0.94
& LI>10 100 0.93
RAP (927) SGF (714)
T-Storm N P T-Storm N P
if LI<3.0 484 0.71 if Ki>23.8 374 0.66
& KI>25.4 292 0.78 & KI>33.2 143 0.87
& Li< -0.6 119 0.88
No T-Storm N P No T-Storm N P
if LI>3.0 443 0.76 if Ki<23.8 374 0.82
& LI>8.3 136 0.93 & LI>7.2 120 0.97

127




Table A-3. 12Z Lightning Probability Results (cont.).
FWD (814) DDC (994)
T-Storm N P T-Storm N P
if KI>27.8 440 0.58 if K1>21.3 726 0.47
& KiI>34.8 179 0.73 & KI>32.7 306 0.61
& KI>37.4 106 0.72
No T-Storm N P No T-Storm N P
if Ki<27.8 374 0.82 if Ki<21.3 268 0.89
& S$SI>2.95 174 0.93 & TTI<40.5 118 0.93
DVN (728) LZK (1224)
T-Storm N P T-Storm N P
if Ki>25.2 284 0.65 if SSI<2.6 660 0.66
& Li<1.1 169 0.76 & Li<1.4 543 0.72
& KI>29.6 332 0.81
& SSI<2.5 100 0.92
NoT-Storm N P NoT-Storm N P
if Ki<25.2 444 0.83 if SSI1>2.6 564 0.81
& LI>3.2 327 0.89 & Ki<10.9 273 0.94
& TTI<38.2 218 0.94
SHV (748) AMA (994)
T-Storm N P T-Storm N P
if KI>26.4 402 0.72 if LI<1.9 646 0.57
& Ki>33.5 179 0.87 & Ki>27.4 460 0.65
& KI>35.1 156 0.76
No T-Storm N P No T-Storm N P
if Ki>26.4 346 0.77 if Li>1.9 286 0.86
& LI>-1.4 237 0.87 & LI>5.1 162 0.94
& TTI<37 101 0.93
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Table A-3. 12Z Lightning Probability Results

FSI (195)
T-Storm N
if Ki>30.6 86

No T-Storm N
if KI>30.6 109
& LI>2.2 56

P
0.62

0.77
0.89
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Table A-4. 00Z Mean Lightning Strike Results.

mean N \ OUN (437) | N mean| mean
439 334 LI=-43 103 1455 409
227 129 TTI=45.8 205 572 279

N | LBF(516) | N mean
386 SSI=-41 130 1191
267 SSI=-1.83 119 699

mean N | OAX(362) | N mean| mean
491 200 SSI=-1.06 162 1573| 780
443

N | TOP(439) | N mean
339 SSI=-36 100 2687
151  SSI=0.49 188 1052

mean N | RAP (477 N mean/mean N | SGF (323 N mean
367 368 SSI=-3.3 109 1407 377 192 TTI=47.8 131 1104

mean N | FWD(328) | N mean|

mean N | DDC (517 N mean

282 228 TTI=504 100 1513 745 394 LI=-43 123 2008

407 148 SSI=-0.5 246 948
| 798 142 TTi=50.1 104 1153

mean N | DVN(302) | N mean|mean N | LZK(440) | N mean
349 174 Ll=-1.4 128 1508| 367 340 LI=-39 100 1546

| 179 207 KI=331 133 659

mean N | SHV(334) | N meanimean N [AMA(498)| N  mean

%

360 234 Li=-43 100 1182
169 110 TTI=45.5 124 530 §

566 354 LI=-29 144 1418
461 281 KI=37.8 73 967
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Table A-5. 127 Mean Lightning Strike Results.

mean N I OUN (423) | N mean|
484 251 SSI=-17 172 939
609 112 LI=03 139 384 |

mean N | LBF (393 N mean
171 293 Ki=33.3 100 432
122 112 LI=0.3 181 249

mean N ’OAX§308) N mean

235 189 SSI=-0.68 119 659

mean N l TOP (378) | N mean
479 260 SSI=-2.13 118 1388

294 128 KI=301 132 659
mean N | RAP(402) | N mean|| mean N | SGF(305) | N mean
348 235 SSI=-22 167 935 | 399 183 KI=33.3 122 750
mean N | FWD (326) | N mean mean N | DDC (373 N mean
442 214 LI=-28 112 1107} 172 196 Li=-1.0 177 427

| 244 51 KI=33.5 126 501

mean N | DVN (261 N mean
304 100 TTI=446 161 1330

mean N | LZK(541) | N mean
458 300 Li=-17 241 1235
288 KI = 29.2 656
| 674 KI = 31.9 1634

mean N SHV () IN mean
N/A

See LZK
Results

mean N AMA () N mean

N/A
See FWD
Results
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Appendix B: Decision Tree Full Model Cross-Validation Results

The results of the full models are included for
comparison reasons in appendix B to provide evidence of how
well the decision tree results of this study cross-
validate. Cross-validation means comparing a smaller study
sample to the maximized database, and if similar results
are found for the smaller study sample compared to the
maximized sample, then the results cross-validate well and
are considered significant. Full model in this case means
that all of the indices were included in the decision tree
model run which equated to a 30-40% smaller database due to
missing data in a few of the stability indices that have
already been determined as less significant predictors (KO,
CAPE, and SWEAT). So the maximized model results do not
include the less significant indices and therefore is
“maximized” and 30-40% larger.

The following are some examples of very significant,
almost identical, cross-validations from the textual
summary output. Table B-1 compares the maximized model of
00Z LBF to the full model. Again the total number of cases
included is in parenthesis next to the location identifier.
There are 631/1037 = 0.61 or 39% fewer cases in the full

model results for 00Z LBF, yet striking similarities exist
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between the first tree node threshold (SSI<1.1 for T-Storm
or SSI>1.1 for No T-Storm), which is always deemed the most
significant because the remaining indices all depend
(inclusively) upon the condition that SSI<1.1 for T-Storm
or SSI>1.1 for No T-Storm and therefore must first exist to
be valid. Again, when the number of cases available drop
to near 100 or less, accuracy becomes questionable. So
KO<3.3 for the full model No T-Storm category only contains
51 cases and its inclusion in the maximized model results
is not recommended. Next, compare Tables B-2 and B-3, and
notice the similarities between the maximized tree model
results versus the full model. The reader is encouraged to
assess the cross-validations of the other locations as well
as the 12Z sounding results of the full model in this

appendix to the maximized model results in Appendix A.

Table B-1. Maximized versus Full classification tree
results for 00Z LBF.
| LBF (1037) | VS. | LBF (631) |
T-Storm N P T-Storm N P
if SSIk1.1 585 0.69 if SSI<1.1 355 0.7
& KI>30.6 305 0.78 & SSI<-34 119 0.86
& TTI>52 147 0.86
No T-Storm N P No T-Storm N P
if SSi>1.1 452 0.76 if SSi>1.1 276 0.75
& SSI>5.6 152 0.84 & S$SI1>5.2 101 0.85
& KO<3.3 51 0.96
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Table B-2. Maximized versus Full classification tree
results for 00Z FWD.

FWD (816) VS. | Fwp (471) |

T-Storm N P T-Storm N P
if KI>30.5 346 0.61 if KI>27.05 288 0.59
& KI>371 110 0.8 & TTI>41.10 223 0.68

& TTI>47 108 0.65

No T-Storm N P No T-Storm N P
if Ki<30.5 470 0.75 if Ki<27.05 183 0.78
& TTIk41.2 132 0.92 & TTik41.10 61 0.92

& Kl<23.8 160 0.77

Table B-3. Maximized versus Full classification tree
results for 00Z LZK.
| LzK (1006) | VS. | LzK (723) |
T-Storm N P T-Storm N P
if KI>27.3 491 0.65 if KiI>27.3 364 0.67
& TTI>45.7 255 0.8 & TTI>45.7 191 0.81
& KI>33.4 153 0.84 & TTI>49.6 60 0.95
No T-Storm N P No T-Storm N P
if Ki<27.3 515 0.77 if Ki<27.3 359 0.77
& LI>0.4 310 0.86 & LI>0.4 213 0.85

& Ki<11.9 157 0.89

Again, typically when the available cases exist above
100 for both models, they cross-validate very well. Notice
that the 00Z LZK results in Table B-3 are nearly identical,

yet the full model for 00Z LZK is 28% smaller. The cross-
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validation results should be very compelling to skeptics
and should be considered other than just coincidence.
Assessing how well the regression tree results cross-
validate is a little different in that the regression tree
model only includes the cases for CG lightning events only,
thus sufficiently reducing the number of cases available.
for regression tree model fit. Also, the regression tree
model results are not inclusive and not categorical, but
instead independent and numerical. Similarly though is
that the most important or significant index and threshold
value is listed first because of the higher number of cases
available. Table B-4 below is an example regression tree
cross-validation for 00Z OUN with the significant
similarities highlighted. There are approximately 25%
fewer cases in the full model. Again, the results between

the maximum and full models are strikingly similar.

Table B-4. Maximized versus Full regression tree
results for 00Z OUN.

mean N | OUN(437) | N mean||mean N | OUN(325) | N mean
439 334 Li=-43 103 1455 || 432 268 Ll=-49 57 1722
227 129 TTI=458 205 572 ||162 102 TTI=458 166 598
424 126 KO=-10 40 1146
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Table B-5. 00Z Full Model Classification Tree Results.

| LBF (631) |
T-Storm N P
if  SSI<11 355 0.7
& SSi<-34 119 0.86

No T-Storm N P
if SSI>1.1 276 0.75
& SSI>5.2 101 0.85
& KO<3.3 51 0.96

| TOP (570) |
T-Storm N P
if  SSI<0.5 277 0.69
&  KI>33.2 110 0.82

No T-Storm N P
if S$SI1>0.5 293 0.72
& Ki<25.2 203 0.81
& Ki>4.3 116 0.89

| OUN (705) |
T-Storm N P
if Ki>27.8 370 0.61
& SWEAT>230 175 0.72
No T-Storm N P
if Kl<27.8 335 0.72
& SWEAT<160 145 0.76
& LI>3.0 106 0.82
| OAX (476) |
T-Storm N P
if SSI<3.1 278 0.64
& TTI>46.9 107 0.65
& Ki>34.4 65 0.84
No T-Storm N P
if SSI>3.1 198 0.79
& Ki<15.3 100 0.89
| RAP (499) |
T-Storm N P
if Li<1.4 251 0.74
& Li< -0.8 137 0.87
&
No T-Storm N P
if LI>1.4 248 0.79
& SSI1>4.3 141 0.86

| SGF( |

N/A
See LZK
results
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007 Full Model Classification Tree Results.

Table B-6.
| FWD (471) |
T-Storm N P
if KI>27.05 288 0.59
& TTI»41.10 223 0.68
No T-Storm N P
if Ki<27.05 183 0.78
& TTlk41.10 61 0.92
| DVN (437) |
T-Storm N P
if SSiIk1.4 159 0.72
& Ki>30.1 98 0.83
No T-Storm N P
if SSi>1.4 278 0.75
& Ki<25.5 222 0.8
& CAPE>5.2 146 0.87
[ sHv( |
N/A
See LZK
results

| DDC (569) |
T-Storm N P
if SSIk-1.0 286 0.75
& KI1>30.8 186 0.84
& KI>35.0 128 0.88
No T-Storm N P
if SSI>-1.0 283 0.64
& SWEAT<160 145 0.76
& KO< -0.1 91 0.82
| LZK (723) |
T-Storm N P
if KI>27.3 364 0.67
& TTI>45.7 191 0.81
& TTI>49.6 60 0.95
No T-Storm N P
if Ki<27.3 359 0.77
& LI>0.4 213 0.85
| AMA (478) |
T-Storm N P
if Li< -0.4 255 0.77
& SSIk-26 102 0.86
No T-Storm N P
if LI> -0.4 233 0.71
& LI>2.1 104 0.83
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Table B-7. 12Z Full Model Classification Tree Results.

| OUN (723) | | LBF (521) |
T-Storm N P T-Storm N P
if KI>268 419 0.61 if  Li<4.0 443 0.51
& LI<-071 256 0.7 & K254 316 0.58

& L>-10.5 266 0.61
& CAPE>251.2 162 0.7

No T-Storm N P No T-Storm N P
if Kl<26.8 304 0.79 if LI>4.0 178 0.85
& CAPE<1812 253 0.88 & Kl<23.2 128 0.89
| 0AX (500) | | TOP (570) |
T-Storm N P T-Storm N P
if Kl>24.2 257 0.63 if SSI<0.5 277 0.69
& KI>33.0 107 0.78 & KI>33.2 110 0.82

& KI>36.5 51 0.84

No T-Storm N P No T-Storm N P
if Ki<24.2 243 0.81 if SSI>0.5 293 0.72
& TTI<44.5 189 0.86 & Kl<25.2 203 0.81

& LI>4.3 116 0.89

| RAP (477) | | SGF (714) |
T-Storm N P
if  Ll<29 254 0.72 N/A
& LI>269 144 0.82 See LZK
& results

No T-Storm N P
if LI>2.9 223 0.78
& Ki<17.2 102 0.9
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Table B-8. 127 Full Model Classification Tree Results.

| Fwp (510) | | DDC (676) |

T-Storm N P T-Storm N P
if Ki>27.8 291 0.58 if KiI>32.8 208 0.64
& KI>34.75 134 0.75 & Li< -0.1 158 0.69
& SSI< -3.7 56 0.71

No T-Storm N P No T-Storm N P
if Kl<27.8 219 0.81 if Kl<23 207 0.85
& KO>-133 168 09 & TTI<46.9 156 0.89

& TTI<42.55 105 0.96

| DVN (350) | | LzK (719) |

T-Storm N P T-Storm N P
if Ki>23.2 180 0.66 if SSik1.2 371 0.73
& CAPE>330 113 0.77 & Ki>23 318 0.78
& CAPE>679 255 0.82
& Ki1>30.0 203 0.85
& SSIk-26 69 0.93

No T-Storm N P No T-Storm N P
if Kl<23.2 170 0.84 if SSI>1.2 348 0.76
& TTI<38.2 90 0.94 & KI>9.6 99 0.95

[_sHv (476) | | AMA (591) |

T-Storm N P T-Storm N P
if KiI>33.5 134 0.87 if Li<1.3 360 0.63
& KO<-11.0 84 0.93 & Ki1>28.6 255 0.7
& Kl1>34.9 104 0.8

No T-Storm N P No T-Storm N P
if Kl<33.5 134 0.61 if Ki>1.3 231  0.79
& CAPE<701.5 108 0.86 & Ki<21.3 104 0.88

| Fsi(NA) |
T-Storm N P
NO SIGNIFICANT
RESULTS
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Table B-9. 00Z Full Model Regression Tree Results.
mean N | OUN(325) | N mean||mean N | LBF(253) | N mean
432 268 LI=-49 57 1722 || 186 200 Ki=34.8 53 592
162 102 TTI=45.8 166 598 133 149 KO=-5.9 51 344
424 126 KO=-10 40 1146
mean N OAX (219) N mean| | mean N | TOP(272) | N mean
526 176 SWEAT=298 43 1623 914 230 SSI=-49 42 3172
396 136 LI=-3.0 40 983 552 136 KiI=31.3 94 1438
241 79 SWEAT=180 57 601 270 72 CAPE=1100 64 869
mean N | RAP (247) | N mean| mean N SGF() | N mean
276 147 SSI=-1.2 100 1138 N/A
See LZK
results
mean N | FWD(328) | N mean|mean N | DDC(317) | N mean
316 186 SSI=-1.8 131 833 656 238 SSI=-4.0 79 1913
167 61 CAPE=1328 99 408 492 196 Kl=37.7 43 1423
377 151 SWEAT=260 45 878
mean N | DVN(185) | N mean||mean N | LZK(327) | N mean
512 140 SSI=-1.5 45 2017 261 313 SWEAT=252 66 1654
268 82 Li=-0.2 58 858 228 216 CAPE=2377 45 723
mean N | SHV (261) | N mean| mean N | AMA (261) | N mean

415 149 SWEAT=238 112 1244

550 208 SWEAT=312 53
323 125 Ki=35.4 83

1636
893
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Table B-10. 127 Full Model Regression Tree Results.

mean N | LBF(253) | N

mean N | OUN (317) l N mean mean
480 186 SSI=-1.8 131 833 186 200 Ki=34.8 53 592
519 60 CAPE=1987 71 1099 || 133 149 KO=-59 51 344
157 64 Ki=33.4 70 519
mean N | OAX (207) N mean|| mean N | TOP(261) | N mean
207 151 SWEAT=245.5 56 908 378 175 SSI=-21 86 1343
351 M Ki=32.4 110 1153 || 207 114 CAPE=871 61 698
mean N [ RAP (233) J N mean| imean N SGF () [ N mean
142 115 SWEAT=164.5 118 475 N/A
See LZK
results
mean N | FWD(211) | N mean||mean N | DDC(263) | N mean
493 159 LI=-3.7 52 1422 || 214 199 Li=-2.3 64 509
383 107 CAPE=1676 52 720
mean N | DVN(146) | N mean||mean N | LZK(354) | N mean
541 102 CAPE=1541 44 1655 || 372 148 LiI=-1.1 206 1178
268 40 TTI=43.8 62 718 222 72 CAPE=576.4 76 514
mean N | SHV (164) | N mean | mean N | AMA (274 N mean
556 76 SSI=-19 76 1984 204 126 SSI=-0.78 148 661
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Appendix C: Final S-Plus® Decision Tree Output

The graphics in the following pages are the combined,
optimum, classification and regression tree outputs for
each location in this study. The S-Plus graphical tree and
textual summary output are combined and displayed. The
information contained in each of these decision trees is
the basis for which the results of the maximized model in

Appendix A were developed.
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